scholarly journals Plasmids of enterotoxigenic Escherichia coli H10407: evidence for two heat-stable enterotoxin genes and a conjugal transfer system.

1983 ◽  
Vol 153 (3) ◽  
pp. 1352-1360 ◽  
Author(s):  
T Yamamoto ◽  
T Yokota
1998 ◽  
Vol 61 (2) ◽  
pp. 141-145 ◽  
Author(s):  
HAU-YANG TSEN ◽  
LIANG-ZHAO JIAN ◽  
WAN-RONG CHI

Enterotoxigenic Escherichia coli (ETEC) strains which produce heat labile and/or heat stable toxins (LT and ST) may cause diarrhea in humans and farm animals. Using PCR primers specific for the LT I and ST II genes, a multiplex PCR system which allows detection of LT I- and ST II-producing ETEC strains was developed. When skim milk was used for a PCR assay, it was found that if target cells in the sample were precultured in MacConkey broth for 8 h prior to PCR as few as 100 cells per ml of the sample could be detected. Without the preculture step, 104 CFU of target cells per 0.2 g of porcine stool specimen were required to generate visible PCR products. The multiplex PCR System can be used for rapid testing of fecal specimens, food and possibly environmental samples for the presence of ETEC strains.


1980 ◽  
Vol 29 (3) ◽  
pp. 908-913
Author(s):  
R N Greenberg ◽  
F Murad ◽  
B Chang ◽  
D C Robertson ◽  
R L Guerrant

Purified heat-stable enterotoxin (ST) from a procine strain of enterotoxigenic Escherichia coli activates quanylate cyclase in particulate fractions of rat intestinal tissue and induces fluid accumulation in suckling mice. These effects of ST were examined in the presence of either indomethacin or chlorpromazine. We also examined the effects of these two drugs on fluid accumulation in suckling mice induced by the 8-bromo analog of cyclic guanosine monophosphate. Either indomethacin or chlorpromazine reduced ST activation of guanylate cyclase. Both drugs also reduced intestinal fluid accumulation in suckling mice that resulted from submaximal doses of ST (both P < 0.001). However, there was no reduction in fluid secretion by either drug when a maximally effective dose of ST was used, suggesting that inhibition of fluid secretion by both drugs can be overcome by increasing the ST dose and that a threshold level of guanylate cyclase activity results in maximal secretory response. Both drugs also reduced basal guanylate cylase activity in rat intestinal tissue and fluid secreton in suckling mice. Chlorpromazine also reduced intestinal secretion mediated by 8-bromo cyclic guanosine monophosphate (P < 0.001). These findings indicate that chlorpromazine interferes with the effects of ST both before and after its activation of guanylate cyclase, whereas indomethacin interfers with ST only before its activation of guanylate cyclase.


Peptides ◽  
1992 ◽  
pp. 295-296
Author(s):  
Takashi Sato ◽  
Hiroshi Ozaki ◽  
Yasuo Hata ◽  
Yukiteru Katsube ◽  
Yasutsugu Shimonishi

Sign in / Sign up

Export Citation Format

Share Document