scholarly journals Clinical aspects of heat-labile and heat-stable toxin-producing enterotoxigenic Escherichia coli: A prospective study among Finnish travellers

2020 ◽  
Vol 38 ◽  
pp. 101855
Author(s):  
Katri Turunen ◽  
Jenni Antikainen ◽  
Tinja Lääveri ◽  
Juha Kirveskari ◽  
Ann-Mari Svennerholm ◽  
...  
1998 ◽  
Vol 61 (2) ◽  
pp. 141-145 ◽  
Author(s):  
HAU-YANG TSEN ◽  
LIANG-ZHAO JIAN ◽  
WAN-RONG CHI

Enterotoxigenic Escherichia coli (ETEC) strains which produce heat labile and/or heat stable toxins (LT and ST) may cause diarrhea in humans and farm animals. Using PCR primers specific for the LT I and ST II genes, a multiplex PCR system which allows detection of LT I- and ST II-producing ETEC strains was developed. When skim milk was used for a PCR assay, it was found that if target cells in the sample were precultured in MacConkey broth for 8 h prior to PCR as few as 100 cells per ml of the sample could be detected. Without the preculture step, 104 CFU of target cells per 0.2 g of porcine stool specimen were required to generate visible PCR products. The multiplex PCR System can be used for rapid testing of fecal specimens, food and possibly environmental samples for the presence of ETEC strains.


2006 ◽  
Vol 69 (2) ◽  
pp. 412-416 ◽  
Author(s):  
MICHAEL A. GRANT ◽  
JINXIN HU ◽  
KAREN C. JINNEMAN

A multiplex real-time PCR method was developed for detection of heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli. Approximately 10 CFU per reaction mixture could be detected in rinsates from produce samples. Several foods representative of varieties previously shown to have caused enterotoxigenic E. coli outbreaks were spiked and enriched for 4 or 6 h. Both heat-labile and heat-stable toxin genes could be detected in the foods tested, with the exception of hot sauce, with threshold cycle values ranging from 25.2 to 41.1. A procedure using membrane filtration which would allow enumeration of the enterotoxigenic E. coli population in a food sample in less than 28 h by real-time PCR analysis of colonies picked from media highly selective for E. coli was also developed.


2011 ◽  
Vol 18 (10) ◽  
pp. 1593-1599 ◽  
Author(s):  
Xiaosai Ruan ◽  
Mei Liu ◽  
Thomas A. Casey ◽  
Weiping Zhang

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT192) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT192A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT192A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT192A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrialE. colistrains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea.


1979 ◽  
Vol 9 (4) ◽  
pp. 493-497
Author(s):  
M H Merson ◽  
R B Sack ◽  
A K Kibriya ◽  
A Al-Mahmood ◽  
Q S Adamed ◽  
...  

Diagnosis of enterotoxigenic Escherichia coli diarrhea was made in 109 adult males with an acute dehydrating cholera-like syndrome in Dacca, Bangladesh, by testing 10 colonies isolated from admission stool specimens for production of heat-labile and heat-stable toxins. Toxin testing of one colony yielded a diagnosis in 92% of the cases, testing of two colonies yielded a diagnosis in 95% of the cases, testing of a pool of 5 colonies yielded a diagnosis in 95% of the cases, and testing of a pool of 10 colonies yielded a diagnosis in 96% of the cases. From stool cultures obtained on subsequent days, toxin testing of individual colonies and pools revealed diminished efficacy of pooling with decreasing numbers of enterotoxin-positive isolates in the pool. To detect the presence of enterotoxigenic E. coli in stools, toxin testing of 5 individual isolates and a pool of 10 colonies was found to be almost as effective as the testing of 10 individual isolates.


2006 ◽  
Vol 74 (2) ◽  
pp. 869-875 ◽  
Author(s):  
Kenneth P. Allen ◽  
Mildred M. Randolph ◽  
James M. Fleckenstein

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) infections are a significant cause of diarrheal disease and infant mortality in developing countries. Studies of ETEC pathogenesis relevant to vaccine development have been greatly hampered by the lack of a suitable small-animal model of infection with human ETEC strains. Here, we demonstrate that adult immunocompetent outbred mice can be effectively colonized with the prototypical human ETEC H10407 strain (colonization factor antigen I; heat-labile and heat-stable enterotoxin positive) and that production of heat-labile holotoxin provides a significant advantage in colonization of the small intestine in this model.


2014 ◽  
Vol 82 (5) ◽  
pp. 1823-1832 ◽  
Author(s):  
Xiaosai Ruan ◽  
Donald C. Robertson ◽  
James P. Nataro ◽  
John D. Clements ◽  
Weiping Zhang

ABSTRACTA long-standing challenge in developing vaccines against enterotoxigenicEscherichia coli(ETEC), the most common bacteria causing diarrhea in children of developing countries and travelers to these countries, is to protect against heat-stable toxin type Ib (STa or hSTa). STa and heat-labile toxin (LT) are virulence determinants in ETEC diarrhea. LT antigens are often used in vaccine development, but STa has not been included because of its poor immunogenicity and potent toxicity. Toxic STa is not safe for vaccines, but only STa possessing toxicity is believed to be able to induce neutralizing antibodies. However, recent studies demonstrated that nontoxic STa derivatives (toxoids), after being fused to an LT protein, induced neutralizing antibodies and suggested that different STa toxoids fused to an LT protein might exhibit different STa antigenic propensity. In this study, we selected 14 STa toxoids from a mini-STa toxoid library based on toxicity reduction and reactivity to anti-native STa antibodies, and genetically fused each toxoid to a monomeric double mutant LT (dmLT) peptide for 14 STa-toxoid-dmLT toxoid fusions. These toxoid fusions were used to immunize mice and were characterized for induction of anti-STa antibody response. The results showed that different STa toxoids (in fusions) varied greatly in anti-STa antigenicity. Among them, STaN12S, STaN12T, and STaA14Hwere the top toxoids in inducing anti-STa antibodies.In vitroneutralization assays indicated that antibodies induced by the 3×STaN12S-dmLT fusion antigen exhibited the greatest neutralizing activity against STa toxin. These results suggested 3×STaN12S-dmLT is a preferred fusion antigen to induce an anti-STa antibody response and provided long-awaited information for effective ETEC vaccine development.


2008 ◽  
Vol 15 (8) ◽  
pp. 1194-1198 ◽  
Author(s):  
Jose Flores ◽  
Herbert L. DuPont ◽  
Stephanie A. Lee ◽  
Jaime Belkind-Gerson ◽  
Mercedes Paredes ◽  
...  

ABSTRACT Up to 60% of U.S. visitors to Mexico develop traveler's diarrhea (TD), mostly due to enterotoxigenic Escherichia coli (ETEC) strains that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Distinct single-nucleotide polymorphisms (SNPs) within the interleukin-10 (IL-10) promoter have been associated with high, intermediate, or low production of IL-10. We conducted a prospective study to investigate the association of SNPs in the IL-10 promoter and the occurrence of TD in ETEC LT-exposed travelers. Sera from U.S. travelers to Mexico collected on arrival and departure were studied for ETEC LT seroconversion by using cholera toxin as the antigen. Pyrosequencing was performed to genotype IL-10 SNPs. Stools from subjects who developed diarrhea were also studied for other enteropathogens. One hundred twenty-one of 569 (21.3%) travelers seroconverted to ETEC LT, and among them 75 (62%) developed diarrhea. Symptomatic seroconversion was more commonly seen in subjects who carried a genotype producing high levels of IL-10; it was seen in 83% of subjects with the GG genotype versus 54% of subjects with the AA genotype at IL-10 gene position −1082 (P, 0.02), in 71% of those with the CC genotype versus 33% of those with the TT genotype at position −819 (P, 0.005), and in 71% of those with the CC genotype versus 38% of those with the AA genotype at position −592 (P, 0.02). Travelers with the GCC haplotype were more likely to have symptomatic seroconversion than those with the ATA haplotype (71% versus 38%; P, 0.002). Travelers genetically predisposed to produce high levels of IL-10 were more likely to experience symptomatic ETEC TD.


2011 ◽  
Vol 18 (12) ◽  
pp. 2128-2135 ◽  
Author(s):  
Arthur K. Turner ◽  
Jonathan C. Stephens ◽  
Juliet C. Beavis ◽  
Judith Greenwood ◽  
Cornelia Gewert ◽  
...  

ABSTRACTLive attenuated oral enterotoxigenicEscherichia coli(ETEC) vaccines have been demonstrated to be safe and immunogenic in human volunteers and to provide a viable approach to provide protection against this important pathogen. This report describes the construction of new ETEC vaccine candidate strains from recent clinical isolates and their characterization. All known genes for ETEC toxins were removed, and attenuating deletion mutations were made in thearoC,ompC, andompFchromosomal genes. An isolate expressing coli surface antigen 2 (CS2), CS3, heat-labile toxin (LT), heat-stable toxin (ST), and enteroaggregativeEscherichia coliheat-stable toxin 1 (EAST1) was attenuated to generate ACAM2007. The subsequent insertion of the operon encoding CS1 created ACAM2017, and this was further modified by the addition of an expression cassette containing theeltBgene, encoding a pentamer of B subunits of LT (LTB), to generate ACAM2027. Another isolate expressing CS5, CS6, LT, ST, and EAST1 was attenuated to generate ACAM2006, from which a lysogenic prophage was deleted to create ACAM2012 and an LTB gene was introduced to form ACAM2022. Finally, a previously described vaccine strain, ACAM2010, had theeltBgene incorporated to generate ACAM2025. All recombinant genes were incorporated into the chromosomal sites of the attenuating mutations to ensure maximal genetic stability. The expression of the recombinant antigens and the changes in plasmids accompanying the deletion of toxin genes are described. Strains ACAM2025, ACAM2022, and ACAM2027 have been combined to create the ETEC vaccine formulation ACE527, which has recently successfully completed a randomized, double-blind, placebo-controlled phase I trial and is currently undergoing a randomized, double-blind placebo-controlled phase II challenge trial, both in healthy adult volunteers.


Sign in / Sign up

Export Citation Format

Share Document