scholarly journals Teichoic acid-containing muropeptides from Streptococcus pneumoniae as substrates for the pneumococcal autolysin.

1987 ◽  
Vol 169 (2) ◽  
pp. 447-453 ◽  
Author(s):  
J F Garcia-Bustos ◽  
A Tomasz
2007 ◽  
Vol 189 (19) ◽  
pp. 7105-7111 ◽  
Author(s):  
Marlen Damjanovic ◽  
Arun S. Kharat ◽  
Alice Eberhardt ◽  
Alexander Tomasz ◽  
Waldemar Vollmer

ABSTRACT Streptococcus pneumoniae has an absolute nutritional requirement for choline, and the choline molecules are known to incorporate exclusively into the cell wall and membrane teichoic acids of the bacterium. We describe here the isolation of a mutant of strain R6 in which a single G→T point mutation in the gene tacF (formerly designated spr1150) is responsible for generating a choline-independent phenotype. The choline-independent phenotype could be transferred to the laboratory strain R6 and to the encapsulated strain D39 by genetic transformation with a PCR product or with a plasmid carrying the mutated tacF gene. The tacF gene product belongs to the protein family of polysaccharide transmembrane transporters (flippases). A model is presented in which TacF is required for the transport of the teichoic acid subunits across the cytoplasmic membrane. According to this model, wild-type TacF has a strict specificity for choline-containing subunits, whereas the TacF present in the choline-independent mutant strain is able to transport both choline-containing and choline-free teichoic acid chains. The proposed transport specificity of parental-type TacF for choline-containing subunits would ensure the loading of the cell wall with teichoic acid chains decorated with choline residues, which appear to be essential for the virulence of this pathogen.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tahl Zimmerman ◽  
Valerie Chasten ◽  
Juan Carlos Lacal ◽  
Salam A. Ibrahim

Abstract Streptococcus pneumoniae choline kinase (sChoK) has previously been proposed as a drug target, yet the effectiveness of the first and only known inhibitor of sChoK, HC-3, is in the millimolar range. The aim of this study was thus to further validate sChoK as a potential therapeutic target by discovering more powerful sChoK inhibitors. LDH/PK and colorimetric enzymatic assays revealed two promising sChoK inhibitor leads RSM-932A and MN58b that were discovered with IC50 of 0.5 and 150 μM, respectively, and were shown to be 2–4 magnitudes more potent than the previously discovered inhibitor HC-3. Culture assays showed that the minimum inhibitory concentration (MIC) of RSM-932A and MN58b for S. pneumoniae was 0.4 μM and 10 μM, respectively, and the minimum lethal concentration (MLC) was 1.6 μM and 20 μM, respectively. Western blot monitoring of teichoic acid production revealed differential patterns in response to each inhibitor. In addition, both inhibitors possessed a bacteriostatic mechanism of action, and neither interfered with the autolytic effects of vancomycin. Cells treated with MN58b but not RSM-932A were more sensitive to a phosphate induced autolysis with respect to the untreated cells. SEM studies revealed that MN58b distorted the cell wall, a result consistent with the apparent teichoic acid changes. Two novel and more highly potent putative inhibitors of sChoK, MN58b and RSM-932A, were characterized in this study. However, the effects of sChoK inhibitors can vary at the cellular level. sChoK inhibition is a promising avenue to follow in the development of therapeutics for treatment of S. pneumoniae.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Nicolas Gisch ◽  
Dominik Schwudke ◽  
Simone Thomsen ◽  
Nathalie Heß ◽  
Regine Hakenbeck ◽  
...  

Abstract Members of the Mitis group of streptococci possess teichoic acids (TAs) as integral components of their cell wall that are unique among Gram-positive bacteria. Both, lipoteichoic (LTA) and wall teichoic acid, are formed by the same biosynthetic pathway, are of high complexity and contain phosphorylcholine (P-Cho) residues. These residues serve as anchors for choline-binding proteins (CBPs), some of which have been identified as virulence factors of the human pathogen Streptococcus pneumoniae. We investigated the LTA structure of its close relative Streptococcus oralis. Our analysis revealed that S. oralis Uo5 LTA has an overall architecture similar to pneumococcal LTA (pnLTA) and can be considered as a subtype of type IV LTA. Its structural complexity is even higher than that of pnLTA and its composition differs in number and type of carbohydrate moieties, inter-residue connectivities and especially the P-Cho substitution pattern. Here, we report the occurrence of a saccharide moiety substituted with two P-Cho residues, which is unique as yet in bacterial derived surface carbohydrates. Finally, we could link the observed important structural variations between S. oralis and S. pneumoniae LTA to the divergent enzymatic repertoire for their TA biosynthesis.


2008 ◽  
Vol 190 (12) ◽  
pp. 4129-4138 ◽  
Author(s):  
Ana González ◽  
Daniel Llull ◽  
María Morales ◽  
Pedro García ◽  
Ernesto García

ABSTRACT The nutritional requirement that Streptococcus pneumoniae has for the aminoalcohol choline as a component of teichoic and lipoteichoic acids appears to be exclusive to this prokaryote. A mutation in the tacF gene, which putatively encodes an integral membrane protein (possibly, a teichoic acid repeat unit transporter), has been recently identified as responsible for generating a choline-independent phenotype of S. pneumoniae (M. Damjanovic, A. S. Kharat, A. Eberhardt, A. Tomasz, and W. Vollmer, J. Bacteriol. 189:7105-7111, 2007). We now report that Streptococcus mitis can grow in choline-free medium, as previously illustrated for Streptococcus oralis. While we confirmed the finding by Damjanovic et al. of the involvement of TacF in the choline dependence of the pneumococcus, the genetic transformation of S. pneumoniae R6 by using S. mitis SK598 DNA and several PCR-amplified tacF fragments suggested that a minimum of two mutations were required to confer improved fitness to choline-independent S. pneumoniae mutants. This conclusion is supported by sequencing results also reported here that indicate that a spontaneous mutant of S. pneumoniae (strain JY2190) able to proliferate in the absence of choline (or analogs) is also a double mutant for the tacF gene. Microscopic observations and competition experiments during the cocultivation of choline-independent strains confirmed that a minimum of two amino acid changes were required to confer improved fitness to choline-independent pneumococcal strains when growing in medium lacking any aminoalcohol. Our results suggest complex relationships among the different regions of the TacF teichoic acid repeat unit transporter.


2020 ◽  
Vol 8 (3) ◽  
pp. 413 ◽  
Author(s):  
Pierre-Alexander Mücke ◽  
Sandra Maaß ◽  
Thomas P. Kohler ◽  
Sven Hammerschmidt ◽  
Dörte Becher

Secreted antimicrobial peptides (AMPs) are an important part of the human innate immune system and prevent local and systemic infections by inhibiting bacterial growth in a concentration-dependent manner. In the respiratory tract, the cationic peptide LL-37 is one of the most abundant AMPs and capable of building pore complexes in usually negatively charged bacterial membranes, leading to the destruction of bacteria. However, the adaptation mechanisms of several pathogens to LL-37 are already described and are known to weaken the antimicrobial effect of the AMP, for instance, by repulsion, export or degradation of the peptide. This study examines proteome-wide changes in Streptococcus pneumoniae D39, the leading cause of bacterial pneumonia, in response to physiological concentrations of LL-37 by high-resolution mass spectrometry. Our data indicate that pneumococci may use some of the known adaptation mechanisms to reduce the effect of LL-37 on their physiology, too. Additionally, several proteins seem to be involved in resistance to AMPs which have not been related to this process before, such as the teichoic acid flippase TacF (SPD_1128). Understanding colonization- and infection-relevant adaptations of the pneumococcus to AMPs, especially LL-37, could finally uncover new drug targets to weaken the burden of this widespread pathogen.


2008 ◽  
Vol 191 (4) ◽  
pp. 1200-1210 ◽  
Author(s):  
Stefanie Baur ◽  
Jon Marles-Wright ◽  
Stephan Buckenmaier ◽  
Richard J. Lewis ◽  
Waldemar Vollmer

ABSTRACT Streptococcus pneumoniae has unusually complex cell wall teichoic acid and lipoteichoic acid, both of which contain a ribitol phosphate moiety. The lic region of the pneumococcal genome contains genes for the uptake and activation of choline, the attachment of phosphorylcholine to teichoic acid precursors, and the transport of these precursors across the cytoplasmic membrane. The role of two other, so far uncharacterized, genes, spr1148 and spr1149, in the lic region was determined. TarJ (spr1148) encodes an NADPH-dependent alcohol dehydrogenase for the synthesis of ribitol 5-phosphate from ribulose 5-phosphate. TarI (spr1149) encodes a cytidylyl transferase for the synthesis of cytidine 5′-diphosphate (CDP)-ribitol from ribitol 5-phosphate and cytidine 5′-triphosphate. We also present the crystal structure of TarI with and without bound CDP, and the structures present a rationale for the substrate specificity of this key enzyme. No transformants were obtained with insertion plasmids designed to interrupt the tarIJ genes, indicating that their function could be essential for cell growth. CDP-activated ribitol is a precursor for the synthesis of pneumococcal teichoic acids and some of the capsular polysaccharides. Thus, all eight genes in the lic region have a role in teichoic acid synthesis.


1998 ◽  
Vol 180 (8) ◽  
pp. 2093-2101 ◽  
Author(s):  
Janet Yother ◽  
Klaus Leopold ◽  
Johanna White ◽  
Werner Fischer

A mutant (JY2190) of Streptococcus pneumoniae Rx1 which had acquired the ability to grow in the absence of choline and analogs was isolated. Lipoteichoic acid (LTA) and wall teichoic acid (TA) isolated from the mutant were free of phosphocholine and other phosphorylated amino alcohols. Both polymers showed an unaltered chain structure and, in the case of LTA, an unchanged glycolipid anchor. The cell wall composition was also not altered except that, due to the lack of phosphocholine, the phosphate content of cell walls was half that of the parent strain. Isolated cell walls of the mutant were resistant to hydrolysis by pneumococcal autolysin (N-acetylmuramyl-l-alanine amidase) but were cleaved by the muramidases CPL and cellosyl. The lack of active autolysin in the mutant cells became apparent by impaired cell separation at the end of cell division and by resistance against stationary-phase and penicillin-induced lysis. As a result of the absence of choline in the LTA, pneumococcal surface protein A (PspA) was no longer retained on the cytoplasmic membrane. During growth in the presence of choline, which was incorporated as phosphocholine into LTA and TA, the mutant cells separated normally, did not release PspA, and became penicillin sensitive. However, even under these conditions, they did not lyse in the stationary phase, and they showed poor reactivity with antibody to phosphocholine and an increased release of C-polysaccharide from the cell. In contrast to ethanolamine-grown parent cells (A. Tomasz, Proc. Natl. Acad. Sci. USA 59:86–93, 1968), the choline-free mutant cells retained the capability to undergo genetic transformation but, compared to Rx1, with lower frequency and at an earlier stage of growth. The properties of the mutant could be transferred to the parent strain by DNA of the mutant.


Sign in / Sign up

Export Citation Format

Share Document