scholarly journals Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120.

1991 ◽  
Vol 173 (8) ◽  
pp. 2442-2450 ◽  
Author(s):  
B Brahamsha ◽  
R Haselkorn
2011 ◽  
Vol 63 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Yi-Fei Chen ◽  
Olivia Motteux ◽  
Sylvie Bédu ◽  
Yue-Zhong Li ◽  
Cheng-Cai Zhang

Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3257-3263 ◽  
Author(s):  
Jian-Hong Li ◽  
Sophie Laurent ◽  
Viren Konde ◽  
Sylvie Bédu ◽  
Cheng-Cai Zhang

In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, a starvation of combined nitrogen induces differentiation of heterocysts, cells specialized in nitrogen fixation. How do filaments perceive the limitation of the source of combined nitrogen, and what determines the proportion of heterocysts? In cyanobacteria, 2-oxoglutarate provides a carbon skeleton for the incorporation of inorganic nitrogen. Recently, it has been proposed that the concentration of 2-oxoglutarate reflects the nitrogen status in cyanobacteria. To investigate the effect of 2-oxoglutarate on heterocyst development, a heterologous gene encoding a 2-oxoglutarate permease under the control of a regulated promoter was expressed in Anabaena sp. PCC 7120. The increase of 2-oxoglutarate within cells can trigger heterocyst differentiation in a subpopulation of filaments even in the presence of nitrate. In the absence of a source of combined nitrogen, it can increase heterocyst frequency, advance the timing of commitment to heterocyst development and further increase the proportion of heterocysts in a patS mutant. Here, it is proposed that the intracellular concentration of 2-oxoglutarate is involved in the determination of the proportion of the two cell types according to the carbon/nitrogen status of the filament.


2002 ◽  
Vol 184 (9) ◽  
pp. 2491-2499 ◽  
Author(s):  
Kathryn M. Jones ◽  
Robert Haselkorn

ABSTRACT Two operons have been cloned from Anabaena sp. strain PCC 7120 DNA, each of which encodes the three core subunits of distinct mitochondrial-type cytochrome c oxidases. The two operons are only 72 to 85% similar to one another at the nucleotide level in the most conserved subunit. One of these, coxBACII, is induced >20-fold in the middle to late stages of heterocyst differentiation. Analysis of green fluorescent protein reporters indicates that this operon is expressed specifically in proheterocysts and heterocysts. The other operon, coxBACI, is induced only 2.5-fold following nitrogen step-down and is expressed in all cells. Surprisingly, a disruption mutant of coxAII, the gene encoding subunit I of the heterocyst-specific oxidase, grows normally in the absence of combined nitrogen. It is likely that coxBACI and/or two other putative terminal oxidases present in the Anabaena sp. strain PCC 7120 genome are able to compensate for the loss of the heterocyst-specific oxidase in providing ATP for nitrogen fixation and maintaining a low oxygen level in heterocysts.


Sign in / Sign up

Export Citation Format

Share Document