scholarly journals Conserved sequence elements involved in regulation of ribosomal protein gene expression in halophilic archaea.

1996 ◽  
Vol 178 (15) ◽  
pp. 4737-4741 ◽  
Author(s):  
L C Shimmin ◽  
P P Dennis
1991 ◽  
Vol 11 (5) ◽  
pp. 2723-2735 ◽  
Author(s):  
C M Moehle ◽  
A G Hinnebusch

An amino acid limitation in bacteria elicits a global response, called stringent control, that leads to reduced synthesis of rRNA and ribosomal proteins and increased expression of amino acid biosynthetic operons. We have used the antimetabolite 3-amino-1,2,4-triazole to cause histidine limitation as a means to elicit the stringent response in the yeast Saccharomyces cerevisiae. Fusions of the yeast ribosomal protein genes RPL16A, CRY1, RPS16A, and RPL25 with the Escherichia coli lacZ gene were used to show that the expression of these genes is reduced by a factor of 2 to 5 during histidine-limited exponential growth and that this regulation occurs at the level of transcription. Stringent regulation of the four yeast ribosomal protein genes was shown to be associated with a nucleotide sequence, known as the UASrpg (upstream activating sequence for ribosomal protein genes), that binds the transcriptional regulatory protein RAP1. The RAP1 binding sites also appeared to mediate the greater ribosomal protein gene expression observed in cells growing exponentially than in cells in stationary phase. Although expression of the ribosomal protein genes was reduced in response to histidine limitation, the level of RAP1 DNA-binding activity in cell extracts was unaffected. Yeast strains bearing a mutation in any one of the genes GCN1 to GCN4 are defective in derepression of amino acid biosynthetic genes in 10 different pathways under conditions of histidine limitation. These Gcn- mutants showed wild-type regulation of ribosomal protein gene expression, which suggests that separate regulatory pathways exist in S. cerevisiae for the derepression of amino acid biosynthetic genes and the repression of ribosomal protein genes in response to amino acid starvation.


Stem Cells ◽  
2006 ◽  
Vol 24 (9) ◽  
pp. 2034-2044 ◽  
Author(s):  
Hanna T. Gazda ◽  
Alvin T. Kho ◽  
Despina Sanoudou ◽  
Jan M. Zaucha ◽  
Isaac S. Kohane ◽  
...  

JCI Insight ◽  
2020 ◽  
Vol 5 (13) ◽  
Author(s):  
Jad I. Belle ◽  
HanChen Wang ◽  
Amanda Fiore ◽  
Jessica C. Petrov ◽  
Yun Hsiao Lin ◽  
...  

2004 ◽  
Vol 45 (11) ◽  
pp. 3885 ◽  
Author(s):  
Ruby Grewal ◽  
Jadwiga Stepczynski ◽  
Rhonda Kelln ◽  
Timothy Erickson ◽  
Ruth Darrow ◽  
...  

2008 ◽  
Vol 8 (1) ◽  
pp. 104-115 ◽  
Author(s):  
Kwame Twumasi-Boateng ◽  
Yan Yu ◽  
Dan Chen ◽  
Fabrice N. Gravelat ◽  
William C. Nierman ◽  
...  

ABSTRACT Conidiation (asexual sporulation) is a key developmental process in filamentous fungi. We examined the gene regulatory roles of the Aspergillus fumigatus developmental transcription factors StuAp and BrlAp during conidiation. Conidiation was completely abrogated in an A. fumigatus ΔbrlA mutant and was severely impaired in a ΔstuA mutant. We determined the full genome conidiation transcriptomes of wild-type and ΔbrlA and ΔstuA mutant A. fumigatus and found that BrlAp and StuAp governed overlapping but distinct transcriptional programs. Six secondary metabolite biosynthetic clusters were found to be regulated by StuAp, while only one cluster exhibited BrlAp-dependent expression. The ΔbrlA mutant, but not the ΔstuA mutant, had impaired downregulation of genes encoding ribosomal proteins under nitrogen-limiting, but not carbon-limiting, conditions. Interestingly, inhibition of the target of rapamycin (TOR) pathway also caused downregulation of ribosomal protein genes in both the wild-type strain and the ΔbrlA mutant. Downregulation of these genes by TOR inhibition was associated with conidiation in the wild-type strain but not in the ΔbrlA mutant. Therefore, BrlAp-mediated repression of ribosomal protein gene expression is not downstream of the TOR pathway. Furthermore, inhibition of ribosomal protein gene expression is not sufficient to induce conidiation in the absence of BrlAp.


Sign in / Sign up

Export Citation Format

Share Document