scholarly journals Ferrous iron uptake by a magnesium transport system is toxic for Escherichia coli and Salmonella typhimurium.

1997 ◽  
Vol 179 (19) ◽  
pp. 6201-6204 ◽  
Author(s):  
K Hantke
2020 ◽  
Vol 295 (46) ◽  
pp. 15464-15465
Author(s):  
Roland Lill

For decades, the bacterial ferric uptake regulator (Fur) has been thought to respond to ferrous iron to transcriptionally regulate genes required for balancing iron uptake, storage, and utilization. Because iron binding to Fur has never been confirmed in vivo, the physiological iron-sensing mechanism remains an open question. Fontenot et al. now show that Fur purified from Escherichia coli binds an all-Cys-coordinated [2Fe-2S] cluster. This finding opens the exciting possibility that Fur may join numerous well-studied bacterial, fungal, and mammalian proteins that use FeS clusters for cellular iron regulation.


2006 ◽  
Vol 62 (1) ◽  
pp. 120-131 ◽  
Author(s):  
Cornelia Große ◽  
Judith Scherer ◽  
Doreen Koch ◽  
Markus Otto ◽  
Nadine Taudte ◽  
...  

2003 ◽  
Vol 49 (11) ◽  
pp. 727-731 ◽  
Author(s):  
Brian H Raphael ◽  
Lynn A Joens

Among strains of Campylobacter jejuni, levels of ferrous iron (Fe2+) uptake was comparable. However, C. jejuni showed a lower level of ferrous iron uptake than Escherichia coli. Consistent with studies of E. coli, Fe2+uptake in C. jejuni was significantly enhanced by low Mg2+concentration. The C. jejuni genome sequence contains a single known ferrous iron uptake gene, feoB, whose product shares 50% amino acid identity to Helicobacter pylori FeoB and 29% identity to E. coli FeoB. However, Fe2+uptake could not be attributed to FeoB for several reasons. Site-directed mutations in feoB caused no defect in55Fe2+uptake. Among C. jejuni strains, various nucleotide alterations were found in feoB, indicating that some C. jejuni feoB genes are defective. In addition, uptake could not be attributed to the magnesium transporter CorA, since no reduction in55Fe2+uptake was observed in the presence of a CorA-specific inhibitor.Key words: Campylobacter jejuni, ferrous iron uptake, metal transport, FeoB.


2008 ◽  
Vol 190 (17) ◽  
pp. 5953-5962 ◽  
Author(s):  
Alexandra R. Mey ◽  
Elizabeth E. Wyckoff ◽  
Lindsey A. Hoover ◽  
Carolyn R. Fisher ◽  
Shelley M. Payne

ABSTRACT Vibrio cholerae uses a variety of strategies for obtaining iron in its diverse environments. In this study we report the identification of a novel iron utilization protein in V. cholerae, VciB. The vciB gene and its linked gene, vciA, were isolated in a screen for V. cholerae genes that permitted growth of an Escherichia coli siderophore mutant in low-iron medium. The vciAB operon encodes a predicted TonB-dependent outer membrane receptor, VciA, and a putative inner membrane protein, VciB. VciB, but not VciA, was required for growth stimulation of E. coli and Shigella flexneri strains in low-iron medium. Consistent with these findings, TonB was not needed for VciB-mediated growth. No growth enhancement was seen when vciB was expressed in an E. coli or S. flexneri strain defective for the ferrous iron transporter Feo. Supplying the E. coli feo mutant with a plasmid encoding either E. coli or V. cholerae Feo, or the S. flexneri ferrous iron transport system Sit, restored VciB-mediated growth; however, no stimulation was seen when either of the ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed. These data indicate that VciB functions by promoting iron uptake via a ferrous, but not ferric, iron transport system. VciB-dependent iron accumulation via Feo was demonstrated directly in iron transport assays using radiolabeled iron. A V. cholerae vciB mutant did not exhibit any growth defects in either in vitro or in vivo assays, possibly due to the presence of other systems with overlapping functions in this pathogen.


Sign in / Sign up

Export Citation Format

Share Document