scholarly journals aguA, the Gene Encoding an Extracellular α-Glucuronidase from Aspergillus tubingensis, Is Specifically Induced on Xylose and Not on Glucuronic Acid

1998 ◽  
Vol 180 (2) ◽  
pp. 243-249 ◽  
Author(s):  
Ronald P. de Vries ◽  
Charlotte H. Poulsen ◽  
Susan Madrid ◽  
Jaap Visser

ABSTRACT An extracellular α-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70°C. The α-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and β-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this α-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and α-glucuronidase. Glucuronic acid did not induce the expression ofaguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose.

2002 ◽  
Vol 184 (7) ◽  
pp. 1865-1872 ◽  
Author(s):  
Katsushiro Miyamoto ◽  
Eiji Nukui ◽  
Hiroyuki Itoh ◽  
Takaji Sato ◽  
Takeshi Kobayashi ◽  
...  

ABSTRACT Alteromonas sp. strain O-7 secretes several proteins in response to chitin induction. We have found that one of these proteins, designated AprIV, is a novel chitin-binding protease involved in chitinolytic activity. The gene encoding AprIV (aprIV) was cloned in Escherichia coli. DNA sequencing analysis revealed that the open reading frame of aprIV encoded a protein of 547 amino acids with a calculated molecular mass of 57,104 Da. AprIV is a modular enzyme consisting of five domains: the signal sequence, the N-terminal proregion, the family A subtilase region, the polycystic kidney disease domain (PkdD), and the chitin-binding domain type 3 (ChtBD3). Expression plasmids coding for PkdD or both PkdD and ChtBD (PkdD-ChtBD) were constructed. The PkdD-ChtBD but not PkdD exhibited strong binding to α-chitin and β-chitin. Western and Northern analyses demonstrated that aprIV was induced in the presence of N-acetylglucosamine, N-acetylchitobiose, or chitin. Native AprIV was purified to homogeneity from Alteromonas sp. strain O-7 and characterized. The molecular mass of mature AprIV was estimated to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of AprIV were pH 11.5 and 35°C, respectively, and even at 10°C the enzyme showed 25% of the maximum activity. Pretreatment of native chitin with AprIV significantly promoted chitinase activity.


2002 ◽  
Vol 68 (11) ◽  
pp. 5563-5570 ◽  
Author(s):  
Katsushiro Miyamoto ◽  
Eiji Nukui ◽  
Mariko Hirose ◽  
Fumi Nagai ◽  
Takaji Sato ◽  
...  

ABSTRACT Alteromonas sp. strain O-7 secretes several proteins in addition to chitinolytic enzymes in response to chitin induction. In this paper, we report that one of these proteins, designated MprIII, is a metalloprotease involved in the chitin degradation system of the strain. The gene encoding MprIII was cloned in Escherichia coli. The open reading frame of mprIII encoded a protein of 1,225 amino acids with a calculated molecular mass of 137,016 Da. Analysis of the deduced amino acid sequence of MprIII revealed that the enzyme consisted of four domains: the signal sequence, the N-terminal proregion, the protease region, and the C-terminal extension. The C-terminal extension (PkdDf) was characterized by four polycystic kidney disease domains and two domains of unknown function. Western and real-time quantitative PCR analyses demonstrated that mprIII was induced in the presence of insoluble polysaccharides, such as chitin and cellulose. Native MprIII was purified to homogeneity from the culture supernatant of Alteromonas sp. strain O-7 and characterized. The molecular mass of mature MprIII was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 115 kDa. The optimum pH and temperature of MprIII were 7.5 and 50°C, respectively, when gelatin was used as a substrate. Pretreatment of native chitin with MprIII significantly promoted chitinase activity. Furthermore, the combination of MprIII and a novel chitin-binding protease (AprIV) remarkably promoted the chitin hydrolysis efficiency of chitinase.


1998 ◽  
Vol 64 (9) ◽  
pp. 3282-3289 ◽  
Author(s):  
Kazuaki Igarashi ◽  
Yuji Hatada ◽  
Hiroshi Hagihara ◽  
Katsuhisa Saeki ◽  
Mikio Takaiwa ◽  
...  

ABSTRACT A novel liquefying α-amylase (LAMY) was found in cultures of an alkaliphilic Bacillus isolate, KSM-1378. The specific activity of purified LAMY was approximately 5,000 U mg of protein−1, a value two- to fivefold greater between pH 5 and 10 than that of an industrial, thermostable Bacillus licheniformis enzyme. The enzyme had a pH optimum of 8.0 to 8.5 and displayed maximum activity at 55°C. The molecular mass deduced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 53 kDa, and the apparent isoelectric point was around pH 9. This enzyme efficiently hydrolyzed various carbohydrates to yield maltotriose, maltopentaose, maltohexaose, and maltose as major end products after completion of the reaction. Maltooligosaccharides in the maltose-to-maltopentaose range were unhydrolyzable by the enzyme. The structural gene for LAMY contained a single open reading frame 1,548 bp in length, corresponding to 516 amino acids that included a signal peptide of 31 amino acids. The calculated molecular mass of the extracellular mature enzyme was 55,391 Da. LAMY exhibited relatively low amino acid identity to other liquefying amylases, such as the enzymes from B. licheniformis (68.9%), Bacillus amyloliquefaciens (66.7%), and Bacillus stearothermophilus (68.6%). The four conserved regions, designated I, II, III, and IV, and the putative catalytic triad were found in the deduced amino acid sequence of LAMY. Essentially, the sequence of LAMY was consistent with the tertiary structures of reported amylolytic enzymes, which are composed of domains A, B, and C and which include the well-known (α/β)8 barrel motif in domain A.


2007 ◽  
Vol 189 (7) ◽  
pp. 2660-2666 ◽  
Author(s):  
Vandana P. Swetha ◽  
Aditya Basu ◽  
Prashant S. Phale

ABSTRACT Pseudomonas sp. strain C4 metabolizes carbaryl (1-naphthyl-N-methylcarbamate) as the sole source of carbon and energy via 1-naphthol, 1,2-dihydroxynaphthalene, and gentisate. 1-Naphthol-2-hydroxylase (1-NH) was purified 9.1-fold to homogeneity from Pseudomonas sp. strain C4. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme is a homodimer with a native molecular mass of 130 kDa and a subunit molecular mass of 66 kDa. The enzyme was yellow, with absorption maxima at 274, 375, and 445 nm, indicating a flavoprotein. High-performance liquid chromatography analysis of the flavin moiety extracted from 1-NH suggested the presence of flavin adenine dinucleotide (FAD). Based on the spectral properties and the molar extinction coefficient, it was determined that the enzyme contained 1.07 mol of FAD per mol of enzyme. Although the enzyme accepts electrons from NADH, it showed maximum activity with NADPH and had a pH optimum of 8.0. The kinetic constants Km and V max for 1-naphthol and NADPH were determined to be 9.6 and 34.2 μM and 9.5 and 5.1 μmol min−1 mg−1, respectively. At a higher concentration of 1-naphthol, the enzyme showed less activity, indicating substrate inhibition. The Ki for 1-naphthol was determined to be 79.8 μM. The enzyme showed maximum activity with 1-naphthol compared to 4-chloro-1-naphthol (62%) and 5-amino-1-naphthol (54%). However, it failed to act on 2-naphthol, substituted naphthalenes, and phenol derivatives. The enzyme utilized one mole of oxygen per mole of NADPH. Thin-layer chromatographic analysis showed the conversion of 1-naphthol to 1,2-dihydroxynaphthalene under aerobic conditions, but under anaerobic conditions, the enzyme failed to hydroxylate 1-naphthol. These results suggest that 1-NH belongs to the FAD-containing external flavin mono-oxygenase group of the oxidoreductase class of proteins.


2000 ◽  
Vol 182 (4) ◽  
pp. 891-897 ◽  
Author(s):  
Tomohisa Kuzuyama ◽  
Motoki Takagi ◽  
Shunji Takahashi ◽  
Haruo Seto

ABSTRACT In addition to the ubiquitous mevalonate pathway,Streptomyces sp. strain CL190 utilizes the nonmevalonate pathway for isopentenyl diphosphate biosynthesis. The initial step of this nonmevalonate pathway is the formation of 1-deoxy-d-xylulose 5-phosphate (DXP) by condensation of pyruvate and glyceraldehyde 3-phosphate catalyzed by DXP synthase. The corresponding gene, dxs, was cloned from CL190 by using PCR with two oligonucleotide primers synthesized on the basis of two highly conserved regions among dxs homologs from six genera. Thedxs gene of CL190 encodes 631 amino acid residues with a predicted molecular mass of 68 kDa. The recombinant enzyme overexpressed in Escherichia coli was purified as a soluble protein and characterized. The molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 130 kDa by gel filtration chromatography, suggesting that the enzyme is most likely to be a dimer. The enzyme showed a pH optimum of 9.0, with a V max of 370 U per mg of protein and Km s of 65 μM for pyruvate and 120 μM for d-glyceraldehyde 3-phosphate. The purified enzyme catalyzed the formation of 1-deoxyxylulose by condensation of pyruvate and glyceraldehyde as well, with aKm value of 35 mM ford-glyceraldehyde. To compare the enzymatic properties of CL190 and E. coli DXP synthases, the latter enzyme was also overexpressed and purified. Although these two enzymes had different origins, they showed the same enzymatic properties.


1991 ◽  
Vol 69 (5-6) ◽  
pp. 358-365 ◽  
Author(s):  
R. R. Baker ◽  
H.-y. Chang

Phospholipase A2 was extensively purified (1300- to 1400-fold) from rat serum using Sephadex G-100 chromatography. It eluted at a position corresponding to a molecular mass of about 15 kDa. This one purification step gave two bands on sodium dodecyl sulfate – polyacrylamide gel electrophoresis. The faster component had a molecular mass of 16 kDa and the slower band likely contained an aggregate of the faster component. Activity was associated with protein bands on nondenaturing gels. Enzyme activity was assessed using phosphatidylcholine or phosphatidylethanol-amine labelled at sn position 2 with radioactive arachidonate. Phosphatidylethanolamine gave higher specific activities than phosphatidylcholine. The enzyme has an absolute requirement for Ca2+ and a pH optimum at 7.4. This pH optimum was more prominent for phosphatidylethanolamine. Activity was inhibited by oleate or arachidonate when phosphatidylcholine was used as substrate, but added free fatty acid did not significantly affect the hydrolysis of phosphatidylethanolamine. Addition of bovine serum albumin (fatty acid free) to assays increased the rate of release of arachidonate from phosphatidylcholine, but not from phosphatidylethanolamine. Phospholipase A2 is present in serum likely as a consequence of blood coagulation and may release fatty acids from cellular membranes following hemorrhage.Key words: phospholipase A2, phosphatidylcholine, phosphatidylethanolamine, rat serum.


1998 ◽  
Vol 180 (17) ◽  
pp. 4591-4595 ◽  
Author(s):  
Zhongqi He ◽  
John K. Davis ◽  
Jim C. Spain

ABSTRACT 2-Aminonumconic 6-semialdehyde is an unstable intermediate in the biodegradation of nitrobenzene and 2-aminophenol by Pseudomonas pseudoalcaligenes JS45. Previous work has shown that enzymes in cell extracts convert 2-aminophenol to 2-aminomuconate in the presence of NAD+. In the present work, 2-aminomuconic semialdehyde dehydrogenase was purified and characterized. The purified enzyme migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 57 kDa. The molecular mass of the native enzyme was estimated to be 160 kDa by gel filtration chromatography. The optimal pH for the enzyme activity was 7.3. The enzyme is able to oxidize several aldehyde analogs, including 2-hydroxymuconic semialdehyde, hexaldehyde, and benzaldehyde. The gene encoding 2-aminomuconic semialdehyde dehydrogenase was identified by matching the deduced N-terminal amino acid sequence of the gene with the first 21 amino acids of the purified protein. Multiple sequence alignment of various semialdehyde dehydrogenase protein sequences indicates that 2-aminomuconic 6-semialdehyde dehydrogenase has a high degree of identity with 2-hydroxymuconic 6-semialdehyde dehydrogenases.


2000 ◽  
Vol 44 (9) ◽  
pp. 2349-2355 ◽  
Author(s):  
Patricia Soteropoulos ◽  
Tanya Vaz ◽  
Rosaria Santangelo ◽  
Padmaja Paderu ◽  
David Y. Huang ◽  
...  

ABSTRACT The Cryptococcus neoformans PMA1 gene, encoding a plasma membrane H+-ATPase, was isolated from a genomic DNA library of serotype A strain ATCC 6352. An open reading frame of 3,380 nucleotides contains six introns and encodes a predicted protein consisting of 998 amino acids with a molecular mass of approximately 108 kDa. Plasma membranes were isolated, and the H+-ATPase was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be slightly larger than the S. cerevisiaeH+-ATPase, consistent with its predicted molecular mass. The plasma membrane-bound enzyme exhibited a pH 6.5 optimum for ATP hydrolysis, Km and V maxvalues of 0.5 mM and 3.1 μmol mg−1 min−1, respectively, and an apparent Ki for vanadate inhibition of 1.6 μM. ATP hydrolysis in plasma membranes and medium acidification by whole cells were inhibited by ebselen, a nonspecific H+-ATPase antagonist which was also fungicidal. The predicted C. neoformans protein is 35% identical to proton pumps of both pathogenic and nonpathogenic fungi but exhibits more than 50% identity to PMA1 genes from plants. Collectively, this study provides the basis for establishing the CryptococcusH+-ATPase as a viable target for antifungal drug discovery.


1998 ◽  
Vol 180 (14) ◽  
pp. 3541-3547 ◽  
Author(s):  
Ryan H. Senaratne ◽  
Hamid Mobasheri ◽  
K. G. Papavinasasundaram ◽  
Peter Jenner ◽  
Edward J. A. Lea ◽  
...  

ABSTRACT An open reading frame in the genomic database ofMycobacterium tuberculosis H37Rv was identified as having homology with an outer membrane protein. We found that the gene specified a protein belonging to the OmpA family, which includes some porins of gram-negative organisms. The gene was amplified by PCR and cloned into Escherichia coli. Overexpression of the gene was toxic to the host, but limited amounts could be purified from cells before growth ceased. A truncated gene devoid of the code for a presumed signal sequence was well expressed, but the protein had no pore-forming activity in the liposome swelling assay. However, the intact protein, OmpATb, behaved as a porin of low specific activity, with a pore diameter of 1.4 to 1.8 nm, and was also active in planar lipid bilayers, showing a single-channel conductance of 700 pS. The protein had a molecular mass of about 38 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A polyclonal rabbit antiserum raised to the truncated protein recognized a protein of similar molecular mass in detergent extracts of broken M. tuberculosis cells. Reverse transcription-PCR confirmed that the gene for OmpATb was expressed in M. tuberculosis cells growing in culture. Comparison of the purified protein with that in the detergent-extracted preparation using liposomes and planar lipid bilayers showed that the two materials had similar pore-forming properties. OmpATb is different from either of the mycobacterial porins described so far. This is the first report of a porin-like molecule from M. tuberculosis; the porin is likely to be important in controlling the access of hydrophilic molecules to the bacterial cell.


1999 ◽  
Vol 181 (17) ◽  
pp. 5461-5466 ◽  
Author(s):  
Hiroshi Tsujibo ◽  
Norihiko Kondo ◽  
Keiko Tanaka ◽  
Katsushiro Miyamoto ◽  
Nao Baba ◽  
...  

ABSTRACT We purified from the culture supernatant of Alteromonassp. strain O-7 and characterized a transglycosylating enzyme which synthesized β-(1→6)-(GlcNAc)2, 2-acetamido-6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxyglucopyranose from β-(1→4)-(GlcNAc)2. The gene encoding a novel transglycosylating enzyme was cloned into Escherichia coli, and its nucleotide sequence was determined. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 99,560 Da which corresponds very closely with the molecular mass of the cloned enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the cloned enzyme was much larger than that of enzyme (70 kDa) purified from the supernatant of this strain. These results suggest that the native enzyme was the result of partial proteolysis occurring in the N-terminal region. The enzyme showed significant sequence homology with several bacterial β-N-acetylhexosaminidases which belong to family 20 glycosyl hydrolases. However, this novel enzyme differs from all reported β-N-acetylhexosaminidases in its substrate specificity. To clarify the role of the enzyme in the chitinolytic system of the strain, the effect of β-(1→6)-(GlcNAc)2on the induction of chitinase was investigated. β-(1→6)-(GlcNAc)2 induced a level of production of chitinase similar to that induced by the medium containing chitin. On the other hand, GlcNAc, (GlcNAc)2, and (GlcNAc)3 conversely repressed the production of chitinase to below the basal level of chitinase activity produced constitutively in medium without a carbon source.


Sign in / Sign up

Export Citation Format

Share Document