scholarly journals Mismatch Repair in Escherichia coliCells Lacking Single-Strand Exonucleases ExoI, ExoVII, and RecJ

1998 ◽  
Vol 180 (4) ◽  
pp. 989-993 ◽  
Author(s):  
Reuben S. Harris ◽  
Kimberly J. Ross ◽  
Mary-Jane Lombardo ◽  
Susan M. Rosenberg

ABSTRACT In vitro, the methyl-directed mismatch repair system ofEscherichia coli requires the single-strand exonuclease activity of either ExoI, ExoVII, or RecJ and possibly a fourth, unknown single-strand exonuclease. We have created the first precise null mutations in genes encoding ExoI and ExoVII and find that cells lacking these nucleases and RecJ perform mismatch repair in vivo normally such that triple-null mutants display normal mutation rates. ExoI, ExoVII, and RecJ are either redundant with another function(s) or are unnecessary for mismatch repair in vivo.

Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 503-512 ◽  
Author(s):  
Hongbo Liu ◽  
Stephen R Hewitt ◽  
John B Hays

Abstract Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2·MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to “matched” photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC → CTC and CTT → CTC transitions. F′ lacZ targets were mated from mut+ donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu+ mut+ recipients, a range of UV fluences induced lac+ revertant frequencies of 4–25 × 10−8; these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd− defect, it appears not to involve transcription-coupled excision repair. In mut+ umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m2) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5–10 × 10−8. Thus, at UV doses too low to induce SOS functions, such as Umu2′D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial.


Genetics ◽  
1988 ◽  
Vol 118 (4) ◽  
pp. 593-600 ◽  
Author(s):  
A L Lu ◽  
D Y Chang

Abstract Six different base-pair transversion mismatches are repaired with different efficiencies in an in vitro mismatch repair system. In particular, the T/T and C/C mismatches appear to be less efficiently repaired than the A/A and G/G mismatches. Four A/G and four C/T mismatches at different positions are repaired to different extents. One of the A/G mismatches is repaired equally efficiently when DNA heteroduplexes are fully methylated or hemi-methylated at the d(GATC) sequences. This type of mismatch repair appears to be unidirectional with A to C conversion by acting at A/G mispairs to restore the C/G pairs. This methylation-independent correction is not controlled by the mutH, mutL, mutS, uvrE, uvrB, phr, recA, recF, and recJ gene products. The independence of the transversion mismatch repair of these genes and methylation distinguishes this from the known mismatch repair pathways.


1999 ◽  
Vol 19 (12) ◽  
pp. 8292-8301 ◽  
Author(s):  
Jianxin Wu ◽  
Liya Gu ◽  
Huixian Wang ◽  
Nicholas E. Geacintov ◽  
Guo-Min Li

ABSTRACT The DNA mismatch repair pathway is well known for its role in correcting biosynthetic errors of DNA replication. We report here a novel role for mismatch repair in signaling programmed cell death in response to DNA damage induced by chemical carcinogens. Cells proficient in mismatch repair were highly sensitive to the cytotoxic effects of chemical carcinogens, while cells defective in either human MutS or MutL homologs were relatively insensitive. Since wild-type cells but not mutant cells underwent apoptosis upon treatment with chemical carcinogens, the apoptotic response is dependent on a functional mismatch repair system. By analyzing p53 expression in several pairs of cell lines, we found that the mismatch repair-dependent apoptotic response was mediated through both p53-dependent and p53-independent pathways. In vitro biochemical studies demonstrated that the human mismatch recognition proteins hMutSα and hMutSβ efficiently recognized DNA damage induced by chemical carcinogens, suggesting a direct participation of mismatch repair proteins in mediating the apoptotic response. Taken together, these studies further elucidate the mechanism by which mismatch repair deficiency predisposes to cancer, i.e., the deficiency not only causes a failure to repair mismatches generated during DNA metabolism but also fails to direct damaged and mutation-prone cells to commit suicide.


2016 ◽  
Author(s):  
Maria Andrianova ◽  
Georgii A Bazykin ◽  
Sergey Nikolaev ◽  
Vladimir Seplyarskiy

Mismatch repair (MMR) is one of the main systems maintaining fidelity of replication. Different effectiveness in correction of errors produced during replication of the leading and the lagging DNA strands was reported in yeast, but this effect is poorly studied in humans. Here, we use MMR-deficient (MSI) and MMR-proficient (MSS) cancer samples to investigate properties of the human MMR. MSI, but not MSS, cancers demonstrate unequal mutation rates between the leading and the lagging strands. The direction of strand asymmetry in MSI cancers matches that observed in cancers with mutated exonuclease domain of polymerase δ, indicating that polymerase δ contributes more mutations than its leading-strand counterpart, polymerase ε. As polymerase δ primarily synthesizes DNA during the lagging strand replication, this implies that mutations produced in wild type cells during lagging strand replication are repaired by the MMR ~3 times more effectively, compared to those produced on the leading strand.


2001 ◽  
Vol 66 (7) ◽  
pp. 1107-1124 ◽  
Author(s):  
Josef Jiricny

The availability of nucleoside analogues with ambiguous base-pairing properties would be of considerable value in molecular biology. We have incorporated deoxynebularine [9-(2-deoxy-β-D-ribofuranosyl)purine, P], deoxyinosine [9-(2-deoxy-β-D-ribofuranosyl)-6-hydroxypurine, I) and [9-(2-deoxy-β-D-ribofuranosyl)-6-methoxyaminopurine, MeOA] into hexadecamer oligodeoxyribonucleotides and tested their behaviour in DNA•DNA hybridisations in vitro, as well as in oligonucleotide-directed mutagenesis experiments in vivo. The results showed that P behaved as an adenine analogue in all assays. Oligonucleotide duplexes containing I/C or I/T base pairs displayed similar thermal stabilities in DNA•DNA hybridisation experiments, however, during DNA synthesis in vitro and in vivo, hypoxanthine behaved strictly as a guanine analogue. Only MeOA was truly ambiguous in all assays. The 1H NMR spectrum of the nucleoside demonstrated the existence of two distinct tautomeric forms in a ratio of ca 8 : 2, implying that the base might pair with both C and T. Indeed, within the context of synthetic hexadecamer duplexes, MeOA/C and MeOA/T pairs brought about a similar thermal destabilisation, with the former base pair being only marginally less favoured. When used as hybridisation probes on single-stranded M13 DNA, the MeOA-containing hexadecamer oligonucleotides were shown to bind with similar efficiencies to target sequences containing either C or T opposite the analogue. Interestingly, when MeOA is in the template strand during DNA replication, the polymerase III holoenzyme of E. coli reads it predominantly as a G, which indicates that MeOA exists in B-DNA mostly as the anti-imino tautomer.


Genetics ◽  
1995 ◽  
Vol 140 (4) ◽  
pp. 1175-1186
Author(s):  
W Y Feng ◽  
J B Hays

Abstract During infection of homoimmune Escherichia coli lysogens ("repressed infections"), undamaged nonreplicating lambda phage DNA circles undergo very little recombination. Prior UV irradiation of phages dramatically elevates recombinant frequencies, even in bacteria deficient in UvrABC-mediated excision repair. We previously reported that 80-90% of this UvrABC-independent recombination required MutHLS function and unmethylated d(GATC) sites, two hallmarks of methyl-directed mismatch repair. We now find that deficiencies in other mismatch-repair activities--UvrD helicase, exonuclease I, exonuclease VII, RecJ exonuclease--drastically reduce recombination. These effects of exonuclease deficiencies on recombination are greater than previously observed effects on mispair-provoked excision in vitro. This suggests that the exonucleases also play other roles in generation and processing of recombinagenic DNA structures. Even though dsDNA breaks are thought to be highly recombinagenic, 60% of intracellular UV-irradiated phage DNA extracted from bacteria in which recombination is low--UvrD-, ExoI-, ExoVII-, or Rec(J-)--displays (near-)blunt-ended dsDNA ends (RecBCD-sensitive when deproteinized). In contrast, only bacteria showing high recombination (Mut+ UvrD+ Exo+) generate single-stranded regions in nonreplicating UV-irradiated DNA. Both recF and recB recC mutations strikingly reduce recombination (almost as much as a recF recB recC triple mutation), suggesting critical requirements for both RecF and RecBCD activity. The mismatch repair system may thus process UV-irradiated DNA so as to initiate more than one recombination pathway.


Genetics ◽  
1987 ◽  
Vol 116 (3) ◽  
pp. 343-347
Author(s):  
Margaretha Carraway ◽  
Philip Youderian ◽  
M G Marinus

ABSTRACT The mismatch repair system of Escherichia coli K12 removes mispaired bases from DNA. Mismatch repair can occur on either strand of DNA if it lacks N6-methyladenines within 5′-GATC-3′ sequences. In hemimethylated heteroduplexes, repair occurs preferentially on the unmethylated strand. If both strands are fully methylated, repair is inhibited. Mutant (dam  -) strains of E. coli defective in the adenine methylase that recognizes 5′-GATC-3′ sequences (Dam), and therefore defective in mismatch repair, show increased spontaneous mutation rates compared to otherwise isogenic dam  + hosts. We have isolated and characterized 91 independent mutations that arise as a consequence of the Dam- defect in a plasmid-borne phage P22 repressor gene, mnt. The majority of these mutations are A:T→G:C transitions that occur within six base pairs of the two 5′-GATC-3′ sequences in the mnt gene. In contrast, the spectrum of mnt  - mutations in a dam  + host is comprised of a majority of insertions of IS elements and deletions that do not cluster near Dam recognition sites. These results show that Dam-directed post-replicative mismatch repair plays a significant role in the rectification of potential transition mutations in vivo, and suggest that sequences associated with Dam recognition sites are particularly prone to replication or repair errors.


Sign in / Sign up

Export Citation Format

Share Document