scholarly journals Purification, Characterization, and Gene Analysis of a Chitosanase (ChoA) from Matsuebacter chitosanotabidus3001

1999 ◽  
Vol 181 (21) ◽  
pp. 6642-6649 ◽  
Author(s):  
Jae Kweon Park ◽  
Kumiko Shimono ◽  
Nobuhisa Ochiai ◽  
Kazutaka Shigeru ◽  
Masako Kurita ◽  
...  

ABSTRACT The extracellular chitosanase (34,000 M r) produced by a novel gram-negative bacterium Matsuebacter chitosanotabidus 3001 was purified. The optimal pH of this chitosanase was 4.0, and the optimal temperature was between 30 and 40°C. The purified chitosanase was most active on 90% deacetylated colloidal chitosan and glycol chitosan, both of which were hydrolyzed in an endosplitting manner, but this did not hydrolyze chitin, cellulose, or their derivatives. Among potential inhibitors, the purified chitosanase was only inhibited by Ag+. Internal amino acid sequences of the purified chitosanase were obtained. A PCR fragment corresponding to one of these amino acid sequences was then used to screen a genomic library for the entire choA gene encoding chitosanase. Sequencing of the choA gene revealed an open reading frame encoding a 391-amino-acid protein. The N-terminal amino acid sequence had an excretion signal, but the sequence did not show any significant homology to other proteins, including known chitosanases. The 80-amino-acid excretion signal of ChoA fused to green fluorescent protein was functional in Escherichia coli. Taken together, these results suggest that we have identified a novel, previously unreported chitosanase.

2008 ◽  
Vol 295 (3) ◽  
pp. C632-C641 ◽  
Author(s):  
Atsushi Yonezawa ◽  
Satohiro Masuda ◽  
Toshiya Katsura ◽  
Ken-ichi Inui

Absorption of riboflavin is mediated by transporter(s). However, a mammalian riboflavin transporter has yet to be identified. In the present study, the novel human and rat riboflavin transporters hRFT1 and rRFT1 were identified on the basis of our rat kidney mRNA expression database (Horiba N, Masuda S, Takeuchi A, Saito H, Okuda M, Inui K. Kidney Int 66: 29–45, 2004). hRFT1 and rRFT1 cDNAs have an open reading frame encoding 448- and 450-amino acid proteins, respectively, that exhibit 81.1% identity and 96.4% similarity to one another. In addition, an inactive splice variant of hRFT1, hRFT1sv, was also cloned. The hRFT1sv cDNA, which encodes a 167-amino acid protein, retains an intron between exons 2 and 3 of hRFT1. Real-time PCR revealed that the sum of hRFT1 and hRFT1sv mRNAs was expressed strongly in the placenta and small intestine and was detected in all tissues examined. In addition, hRFT1 and hRFT1sv were expressed in human embryonic kidney (HEK)-293 and Caco-2 cells. HEK-293 cells transfected with green fluorescent protein-tagged hRFT1 and rRFT1 exhibited a fluorescent signal in the plasma membrane. Overexpression of hRFT1 and rRFT1, but not hRFT1sv, increased the cellular accumulation of [3H]riboflavin. The transfection of small interfering RNA targeting both hRFT1 and hRFT1sv significantly decreased the uptake of [3H]riboflavin by HEK-293 and Caco-2 cells. Riboflavin transport is Na+, potential, and pH independent. Kinetic analyses demonstrated that the Michaelis-Menten constants for the uptake by HEK-293 and Caco-2 cells were 28.1 and 63.7 nM, respectively. We propose that hRFT1 and rRFT1 are novel mammalian riboflavin transporters, which belong to a new mammalian riboflavin transporter family.


1999 ◽  
Vol 65 (12) ◽  
pp. 5546-5553 ◽  
Author(s):  
Kazuhiro Iwashita ◽  
Tatsuya Nagahara ◽  
Hitoshi Kimura ◽  
Makoto Takano ◽  
Hitoshi Shimoi ◽  
...  

ABSTRACT We cloned the genomic DNA and cDNA of bglA, which encodes β-glucosidase in Aspergillus kawachii, based on a partial amino acid sequence of purified cell wall-bound β-glucosidase CB-1. The nucleotide sequence of the cloned bglA gene revealed a 2,933-bp open reading frame with six introns that encodes an 860-amino-acid protein. Based on the deduced amino acid sequence, we concluded that the bglA gene encodes cell wall-bound β-glucosidase CB-1. The amino acid sequence exhibited high levels of homology with the amino acid sequences of fungal β-glucosidases classified in subfamily B. We expressed the bglA cDNA inSaccharomyces cerevisiae and detected the recombinant β-glucosidase in the periplasm fraction of the recombinant yeast.A. kawachii can produce two extracellular β-glucosidases (EX-1 and EX-2) in addition to the cell wall-bound β-glucosidase.A. kawachii in which the bglA gene was disrupted produced none of the three β-glucosidases, as determined by enzyme assays and a Western blot analysis. Thus, we concluded that thebglA gene encodes both extracellular and cell wall-bound β-glucosidases in A. kawachii.


2010 ◽  
Vol 76 (17) ◽  
pp. 5892-5901 ◽  
Author(s):  
Yoshikazu Shimada ◽  
Setsuko Yasuda ◽  
Masayuki Takahashi ◽  
Takashi Hayashi ◽  
Norihiro Miyazawa ◽  
...  

ABSTRACT Equol is a metabolite produced from daidzein by enteric microflora, and it has attracted a great deal of attention because of its protective or ameliorative ability against several sex hormone-dependent diseases (e.g., menopausal disorder and lower bone density), which is more potent than that of other isoflavonoids. We purified a novel NADP(H)-dependent daidzein reductase (L-DZNR) from Lactococcus strain 20-92 (Lactococcus 20-92; S. Uchiyama, T. Ueno, and T. Suzuki, international patent WO2005/000042) that is involved in the metabolism of soy isoflavones and equol production and converts daidzein to dihydrodaidzein. Partial amino acid sequences were determined from purified L-DZNR, and the gene encoding L-DZNR was cloned. The nucleotide sequence of this gene consists of an open reading frame of 1,935 nucleotides, and the deduced amino acid sequence consists of 644 amino acids. L-DZNR contains two cofactor binding motifs and an 4Fe-4S cluster. It was further suggested that L-DZNR was an NAD(H)/NADP(H):flavin oxidoreductase belonging to the old yellow enzyme (OYE) family. Recombinant histidine-tagged L-DZNR was expressed in Escherichia coli. The recombinant protein converted daidzein to (S)-dihydrodaidzein with enantioselectivity. This is the first report of the isolation of an enzyme related to daidzein metabolism and equol production in enteric bacteria.


2000 ◽  
Vol 349 (1) ◽  
pp. 281-287 ◽  
Author(s):  
Patricia E. M. MARTIN ◽  
James STEGGLES ◽  
Claire WILSON ◽  
Shoeb AHMAD ◽  
W. Howard EVANS

To study the assembly of gap junctions, connexin-green-fluorescent-protein (Cx-GFP) chimeras were expressed in COS-7 and HeLa cells. Cx26- and Cx32-GFP were targeted to gap junctions where they formed functional channels that transferred Lucifer Yellow. A series of Cx32-GFP chimeras, truncated from the C-terminal cytoplasmic tail, were studied to identify amino acid sequences governing targeting from intracellular assembly sites to the gap junction. Extensive truncation of Cx32 resulted in failure to integrate into membranes. Truncation of Cx32 to residue 207, corresponding to removal of most of the 78 amino acids on the cytoplasmic C-terminal tail, led to arrest in the endoplasmic reticulum and incomplete oligomerization. However, truncation to amino acid 219 did not impair Cx oligomerization and connexon hemichannels were targeted to the plasma membrane. It was concluded that a crucial gap-junction targeting sequence resides between amino acid residues 207 and 219 on the cytoplasmic C-terminal tail of Cx32. Studies of a Cx32E208K mutation identified this as one of the key amino acids dictating targeting to the gap junction, although oligomerization of this site-specific mutation into hexameric hemichannels was relatively unimpaired. The studies show that expression of these Cx-GFP constructs in mammalian cells allowed an analysis of amino acid residues involved in gap-junction assembly.


2000 ◽  
Vol 182 (11) ◽  
pp. 3002-3007 ◽  
Author(s):  
Damian P. Wright ◽  
Catriona G. Knight ◽  
Shanthi G. Parkar ◽  
David L. Christie ◽  
Anthony M. Roberton

ABSTRACT A gene encoding the mucin-desulfating sulfatase inPrevotella strain RS2 has been cloned, sequenced, and expressed in an active form. A 600-bp PCR product generated using primers designed from amino acid sequence data was used to isolate a 5,058-bp genomic DNA fragment containing the mucin-desulfating sulfatase gene. A 1,551-bp open reading frame encoding the sulfatase proprotein was identified, and the deduced 517-amino-acid protein minus its signal sequence corresponded well with the published mass of 58 kDa estimated by denaturing gel electrophoresis. The sulfatase sequence showed homology to aryl- and nonarylsulfatases with different substrate specificities from the sulfatases of other organisms. No sulfatase activity could be detected when the sulfatase gene was cloned into Escherichia coli expression vectors. However, cloning the gene into aBacteroides expression vector did produce active sulfatase. This is the first mucin-desulfating sulfatase to be sequenced and expressed. A second open reading frame (1,257 bp) was identified immediately upstream from the sulfatase gene, coding in the opposite direction. Its sequence has close homology to iron-sulfur proteins that posttranslationally modify other sulfatases. By analogy, this protein is predicted to catalyze the modification of a serine group to a formylglycine group at the active center of the mucin-desulfating sulfatase, which is necessary for enzymatic activity.


2003 ◽  
Vol 69 (7) ◽  
pp. 3849-3857 ◽  
Author(s):  
Takako Mukai ◽  
Shigeyuki Kawai ◽  
Hirokazu Matsukawa ◽  
Yuhsi Matuo ◽  
Kousaku Murata

ABSTRACT A bacterium exhibiting activities of several inorganic polyphosphate [poly(P)]- and ATP-dependent kinases, including glucokinase, NAD kinase, mannokinase, and fructokinase, was isolated, determined to belong to the genus Arthrobacter, and designated Arthrobacter sp. strain KM. Among the kinases, a novel enzyme responsible for the poly(P)- and ATP-dependent mannokinase activities was purified 2,200-fold to homogeneity from a cell extract of the bacterium. The purified enzyme was a monomer with a molecular mass of 30 kDa. This enzyme phosphorylated glucose and mannose with a high affinity for glucose, utilizing poly(P) as well as ATP, and was designated poly(P)/ATP-glucomannokinase. The K m values of the enzyme for glucose, mannose, ATP, and hexametaphosphate were determined to be 0.50, 15, 0.20, and 0.02 mM, respectively. The catalytic sites for poly(P)-dependent phosphorylation and ATP-dependent phosphorylation of the enzyme were found to be shared, and the poly(P)-utilizing mechanism of the enzyme was shown to be nonprocessive. The gene encoding the poly(P)/ATP-glucomannokinase was cloned from Arthrobacter sp. strain KM, and its nucleotide sequence was determined. This gene contained an open reading frame consisting of 804 bp coding for a putative polypeptide with a calculated molecular mass of 29,480 Da. The deduced amino acid sequence of the polypeptide exhibited homology to the amino acid sequences of the poly(P)/ATP-glucokinase of Mycobacterium tuberculosis H37Rv (level of homology, 45%), ATP-dependent glucokinases of Corynebacterium glutamicum (45%), Renibacterium salmoninarum (45%), and Bacillus subtilis (35%), and proteins of bacteria belonging to the order Actinomyces whose functions are not known. Alignment of these homologous proteins revealed seven conserved regions. The mannose and poly(P) binding sites of poly(P)/ATP-glucomannokinase are discussed.


2004 ◽  
Vol 78 (3) ◽  
pp. 1488-1502 ◽  
Author(s):  
Thomas R. Jones ◽  
Shi-Wu Lee

ABSTRACT The human cytomegalovirus (HCMV) virion is comprised of a linear double-stranded DNA genome, proteinaceous capsid and tegument, and a lipid envelope containing virus-encoded glycoproteins. Of these components, the tegument is the least well defined in terms of both protein content and function. Several of the major tegument proteins are phosphoproteins (pp), including pp150, pp71, pp65, and pp28. pp28, encoded by the UL99 open reading frame (ORF), traffics to vacuole-like cytoplasmic structures and was shown recently to be essential for envelopment. To elucidate the UL99 amino acid sequences necessary for its trafficking and function in the HCMV replication cycle, two types of viral mutants were analyzed. Using a series of recombinant viruses expressing various UL99-green fluorescent protein fusions, we demonstrate that myristoylation at glycine 2 and an acidic cluster (AC; amino acids 44 to 57) are required for the punctate perinuclear and cytoplasmic (vacuole-like) localization observed for wild-type pp28. A second approach involving the generation of several UL99 deletion mutants indicated that at least the C-terminal two-thirds of this ORF is nonessential for viral growth. Furthermore, the data suggest that an N-terminal region of UL99 containing the AC is required for viral growth. Regarding virion incorporation or UL99-encoded proteins, we provide evidence that suggests that a hypophosphorylated form of pp28 is incorporated, myristoylation is required, and sequences within the first 57 amino acids are sufficient.


2001 ◽  
Vol 82 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Xiao-Wen Cheng ◽  
Peter J. Krell ◽  
Basil M. Arif

Previous reports have indicated that p34.8 (gp37) may be essential for the replication of Autographa californica nucleopolyhedrovirus (AcMNPV) because no virus with inactivated p34.8 was isolated. We have ascertained the requirement for this gene by attempting to inactivate it with a large insertion [the gene encoding GFP (green fluorescent protein)] or by deleting all the conserved domains from the open reading frame (ORF). The gene encoding GFP was inserted into the NotI site of the p34.8 ORF and a viral plaque containing the insertion was propagated in SF-21 cells. Similarly, 531 bp (NotI–XbaI) containing all conserved domains were deleted from the ORF. All mutants were authenticated by PCR amplification, restriction endonuclease analysis, DNA sequencing, and Southern and Northern blot analysis. It was found that inactivation of p34.8 of AcUW1-LacZ (AcMNPV containing a lacZ gene in the p10 locus) had no effect on the biological property of virus, such as virulence and kinetics. These two independent methods showed that p34.8 is not essential for replication and that this locus could provide another site for the engineering of baculoviruses.


1998 ◽  
Vol 64 (2) ◽  
pp. 763-767 ◽  
Author(s):  
Uriwan Vijaranakul ◽  
Anming Xiong ◽  
Katherine Lockwood ◽  
R. K. Jayaswal

ABSTRACT We recently characterized a transposon-induced NaCl-sensitive mutant of Staphylococcus aureus (U. Vijaranakul, M. J. Nadakavukaren, D. O. Bayles, B. J. Wilkinson, and R. K. Jayaswal, Appl. Environ. Microbiol. 63:1889–1897, 1997). To further characterize this mutant, we determined the nucleotide sequence at the insertion site of the transposon on the S. aureuschromosome. Nucleotide sequencing revealed a 1,326-bp open reading frame (ORF442) encoding a hydrophobic 442-amino-acid polypeptide with a calculated molecular mass of 49,058 Da. The hydrophilicity profile of the gene product revealed the existence of 12 hydrophobic domains predicted to form membrane-associated α-helices. Comparison of the amino acid sequence of ORF442 with amino acid sequences in the GenBank database showed extensive homology with the branched-chain-amino-acid transport genes of gram-positive and gram-negative bacteria. This is the first brnQ gene in staphylococci to be described.


2000 ◽  
Vol 44 (5) ◽  
pp. 1309-1314 ◽  
Author(s):  
Jeanette W. P. Teo ◽  
Antonius Suwanto ◽  
Chit Laa Poh

ABSTRACT Two ampicillin-resistant (Ampr) isolates ofVibrio harveyi, W3B and HB3, were obtained from the coastal waters of the Indonesian island of Java. Strain W3B was isolated from marine water near a shrimp farm in North Java while HB3 was from pristine seawater in South Java. In this study, novel β-lactamase genes from W3B (bla VHW-1) and HB3 (bla VHH-1) were cloned and their nucleotide sequences were determined. An open reading frame (ORF) of 870 bp encoding a deduced protein of 290 amino acids (VHW-1) was revealed for the bla gene of strain W3B while an ORF of 849 bp encoding a 283-amino-acid protein (VHH-1) was deduced forbla VHH-1. At the DNA level, genes for VHW-1 and VHH-1 have a 97% homology, while at the protein level they have a 91% homology of amino acid sequences. Neither gene sequence showed homology to any other β-lactamases in the databases. The deduced proteins were found to be class A β-lactamases bearing low levels of homology (<50%) to other β-lactamases of the same class. The highest level of identity was obtained with β-lactamases from Pseudomonas aeruginosa, i.e., PSE-1, PSE-4, and CARB-3, and Vibrio cholerae CARB-6. Our study showed that both strains W3B and HB3 possess an endogenous plasmid of approximately 60 kb in size. However, Southern hybridization analysis employingbla VHW-1 as a gene probe demonstrated that thebla gene was not located in the plasmid. A total of nine ampicillin-resistant V. harveyi strains, including W3B and HB3, were examined by pulsed-field gel electrophoresis ofNotI-digested genomic DNA. Despite a high level of intrastrain genetic diversity, thebla VHW-1 probe hybridized only to an 80- or 160-kb NotI genomic fragment in different isolates.


Sign in / Sign up

Export Citation Format

Share Document