scholarly journals The bZip Transcription Factor Cap1p Is Involved in Multidrug Resistance and Oxidative Stress Response inCandida albicans

1999 ◽  
Vol 181 (3) ◽  
pp. 700-708 ◽  
Author(s):  
Anne-Marie Alarco ◽  
Martine Raymond

ABSTRACT Candida albicans is an opportunistic pathogenic yeast which frequently develops resistance to the antifungal agent fluconazole (FCZ) in patients undergoing long-term therapy. FCZ-resistant strains often display a reduced intracellular FCZ accumulation which correlates with the overexpression of the ATP-binding cassette transporters CDR1 and CDR2or the major facilitator (MF) MDR1. We have recently cloned a C. albicans gene, named CAP1, which codes for a bZip transcription factor of the AP-1 family homologous to the Yap1 protein involved in multidrug resistance and response to oxidative stress in Saccharomyces cerevisiae. CAP1 was found to confer FCZ resistance in S. cerevisiae by transcriptionally activating FLR1, a gene coding for an MF homologous to theC. albicans MDR1 gene product (A.-M. Alarco, I. Balan, D. Talibi, N. Mainville, and M. Raymond, J. Biol. Chem. 272:19304–19313, 1997). To study the role of CAP1 inC. albicans, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CAP1 gene (CJD21). We found that deletion of CAP1 did not affect the susceptibility of CJD21 cells to FCZ, cerulenin, brefeldin A, and diamide but caused hypersensitivity to cadmium, 4-nitroquinolineN-oxide, 1,10-phenanthroline, and hydrogen peroxide, an effect which was reverted by reintroduction of the CAP1gene in these cells. Introduction of a hyperactive truncated allele ofCAP1 (CAP1-TR) in CJD21 resulted in resistance of the cells to all of the above compounds except hydrogen peroxide. The hyperresistant phenotype displayed by the CJD21 CAP1-TRtransformants was found to correlate with the overexpression of a number of potential CAP1 transcriptional targets such asMDR1, CaYCF1, CaGLR1, andCaTRR1. Taken together, our results demonstrate thatCAP1 is involved in multidrug resistance and oxidative stress response in C. albicans. Finally, disruption ofCAP1 in strain FR2, selected in vitro for FCZ resistance and constitutively overexpressing MDR1, did not suppress but rather increased the levels of MDR1 expression, demonstrating that CAP1 acts as a negative transcriptional regulator of the MDR1 gene in FR2 and is not responsible for MDR1 overexpression in this strain.

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e83377 ◽  
Author(s):  
Mathilde Montibus ◽  
Christine Ducos ◽  
Marie-Noelle Bonnin-Verdal ◽  
Jorg Bormann ◽  
Nadia Ponts ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 271
Author(s):  
Xiuna Wang ◽  
Wenjie Zha ◽  
Linlin Liang ◽  
Opemipo Esther Fasoyin ◽  
Lihan Wu ◽  
...  

Fungal secondary metabolites play important roles not only in fungal ecology but also in humans living as beneficial medicine or harmful toxins. In filamentous fungi, bZIP-type transcription factors (TFs) are associated with the proteins involved in oxidative stress response and secondary metabolism. In this study, a connection between a bZIP TF and oxidative stress induction of secondary metabolism is uncovered in an opportunistic pathogen Aspergillus flavus, which produces carcinogenic and mutagenic aflatoxins. The bZIP transcription factor AflRsmA was identified by a homology research of A. flavus genome with the bZIP protein RsmA, involved in secondary metabolites production in Aspergillus nidulans. The AflrsmA deletion strain (ΔAflrsmA) displayed less sensitivity to the oxidative reagents tert-Butyl hydroperoxide (tBOOH) in comparison with wild type (WT) and AflrsmA overexpression strain (AflrsmAOE), while AflrsmAOE strain increased sensitivity to the oxidative reagents menadione sodium bisulfite (MSB) compared to WT and ΔAflrsmA strains. Without oxidative treatment, aflatoxin B1 (AFB1) production of ΔAflrsmA strains was consistent with that of WT, but AflrsmAOE strain produced more AFB1 than WT; tBOOH and MSB treatment decreased AFB1 production of ΔAflrsmA compared to WT. Besides, relative to WT, ΔAflrsmA strain decreased sclerotia, while AflrsmAOE strain increased sclerotia. The decrease of AFB1 by ΔAflrsmA but increase of AFB1 by AflrsmAOE was on corn. Our results suggest that AFB1 biosynthesis is regulated by AflRsmA by oxidative stress pathways and provide insights into a possible function of AflRsmA in mediating AFB1 biosynthesis response host defense in pathogen A. flavus.


Sign in / Sign up

Export Citation Format

Share Document