scholarly journals Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xi Yuan ◽  
Hui Wang ◽  
Jiating Cai ◽  
Yan Bi ◽  
Dayong Li ◽  
...  
2013 ◽  
Vol 25 (9) ◽  
pp. 3472-3490 ◽  
Author(s):  
Inge De Clercq ◽  
Vanessa Vermeirssen ◽  
Olivier Van Aken ◽  
Klaas Vandepoele ◽  
Monika W. Murcha ◽  
...  

1999 ◽  
Vol 181 (3) ◽  
pp. 700-708 ◽  
Author(s):  
Anne-Marie Alarco ◽  
Martine Raymond

ABSTRACT Candida albicans is an opportunistic pathogenic yeast which frequently develops resistance to the antifungal agent fluconazole (FCZ) in patients undergoing long-term therapy. FCZ-resistant strains often display a reduced intracellular FCZ accumulation which correlates with the overexpression of the ATP-binding cassette transporters CDR1 and CDR2or the major facilitator (MF) MDR1. We have recently cloned a C. albicans gene, named CAP1, which codes for a bZip transcription factor of the AP-1 family homologous to the Yap1 protein involved in multidrug resistance and response to oxidative stress in Saccharomyces cerevisiae. CAP1 was found to confer FCZ resistance in S. cerevisiae by transcriptionally activating FLR1, a gene coding for an MF homologous to theC. albicans MDR1 gene product (A.-M. Alarco, I. Balan, D. Talibi, N. Mainville, and M. Raymond, J. Biol. Chem. 272:19304–19313, 1997). To study the role of CAP1 inC. albicans, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CAP1 gene (CJD21). We found that deletion of CAP1 did not affect the susceptibility of CJD21 cells to FCZ, cerulenin, brefeldin A, and diamide but caused hypersensitivity to cadmium, 4-nitroquinolineN-oxide, 1,10-phenanthroline, and hydrogen peroxide, an effect which was reverted by reintroduction of the CAP1gene in these cells. Introduction of a hyperactive truncated allele ofCAP1 (CAP1-TR) in CJD21 resulted in resistance of the cells to all of the above compounds except hydrogen peroxide. The hyperresistant phenotype displayed by the CJD21 CAP1-TRtransformants was found to correlate with the overexpression of a number of potential CAP1 transcriptional targets such asMDR1, CaYCF1, CaGLR1, andCaTRR1. Taken together, our results demonstrate thatCAP1 is involved in multidrug resistance and oxidative stress response in C. albicans. Finally, disruption ofCAP1 in strain FR2, selected in vitro for FCZ resistance and constitutively overexpressing MDR1, did not suppress but rather increased the levels of MDR1 expression, demonstrating that CAP1 acts as a negative transcriptional regulator of the MDR1 gene in FR2 and is not responsible for MDR1 overexpression in this strain.


2020 ◽  
Vol 100 (2) ◽  
pp. 152-155
Author(s):  
Fernando Pinheiro Souza-Neto ◽  
Poliana Camila Marinello ◽  
Gabriela Pasqual Melo ◽  
Leandra Zambeli Naira Ramalho ◽  
Eliana M. Cela ◽  
...  

2021 ◽  
Author(s):  
Anindita Dutta ◽  
Apurba Das ◽  
Deep Bisht ◽  
Vijendra Arya ◽  
Rohini Muthuswami

Cells respond to oxidative stress by elevating the levels of antioxidants, signaling, and transcriptional regulation often implemented by chromatin remodeling proteins.  The study presented in this paper shows that the expression of PICH, an ATP-dependent chromatin remodeler, is upregulated during oxidative stress in HeLa cells. We also show that PICH regulates the expression of Nrf2, a transcription factor regulating antioxidant response, both in the absence and presence of oxidative stress. In turn, Nrf2 regulates the expression of PICH in the presence of oxidative stress. Both PICH and Nrf2 together regulate the expression of antioxidant genes and this transcriptional regulation is dependent on the ATPase activity of PICH. In addition, H3K27ac modification also plays a role in activating transcription in the presence of oxidative stress. Co-immunoprecipitation experiments show that PICH and Nrf2 interact with H3K27ac in the presence of oxidative stress. Mechanistically, PICH recognizes ARE sequences present on its target genes and introduces a conformational change to the DNA sequences leading us to hypothesize that PICH regulates transcription by remodeling DNA. PICH ablation leads to reduced expression of Nrf2 and impaired antioxidant response leading to increased ROS content, thus, showing PICH is essential for the cell to respond to oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document