scholarly journals Cra-Dependent Transcriptional Activation of theicd Gene of Escherichia coli

1999 ◽  
Vol 181 (3) ◽  
pp. 893-898 ◽  
Author(s):  
Jean-François Prost ◽  
Didier Nègre ◽  
Christelle Oudot ◽  
Katsuhiko Murakami ◽  
Akira Ishihama ◽  
...  

ABSTRACT The icd gene of Escherichia coli, encoding isocitrate dehydrogenase, was shown to be expressed from two different promoters: the previously identified icd P1 and a newly detected second promoter, icd P2, whose expression is positively regulated by the catabolite repressor-activator protein Cra, formerly called FruR. In each case, we determined the mRNA start site by primer extension analysis of in vivo transcripts and examined the interaction of the icd control region with either RNA polymerase or Cra. We observed that (i) the Cra factor binds to and activates transcription from a site centered at position −76.5 within the icd P2 promoter region and (ii) three particular mutations in the C-terminal end of the α subunit of RNA polymerase (L262A, R265A, and N268A) considerably diminish transcription initiating from the icd P2 promoter, as shown by in vitro experiments performed in the presence of mutant RNA polymerases carrying Ala substitutions.

2000 ◽  
Vol 182 (15) ◽  
pp. 4180-4187 ◽  
Author(s):  
Sarah M. McLeod ◽  
Jimin Xu ◽  
Reid C. Johnson

ABSTRACT The Escherichia coli proP P2 promoter, which directs the expression of an integral membrane transporter of proline, glycine betaine, and other osmoprotecting compounds, is induced upon entry into stationary phase to protect cells from osmotic shock. Transcription from the P2 promoter is completely dependent on RpoS (ς38) and Fis. Fis activates transcription by binding to a site centered at −41, which overlaps the promoter, where it makes a specific contact with the C-terminal domain of the α subunit of RNA polymerase (α-CTD). We show here that Fis and cyclic AMP (cAMP) receptor protein (CRP)-cAMP collaborate to activate transcription synergistically in vitro. Coactivation both in vivo and in vitro is dependent on CRP binding to a site centered at −121.5, but CRP without Fis provides little activation. The contribution by CRP requires the correct helical phasing of the CRP site and a functional activation region 1 on CRP. We provide evidence that coactivation is achieved by Fis and CRP independently contacting each of the two α-CTDs. Efficient transcription in vitro requires that both activators must be preincubated with the DNA prior to addition of RNA polymerase.


1999 ◽  
Vol 181 (15) ◽  
pp. 4704-4707 ◽  
Author(s):  
Ann M. Stevens ◽  
Nobuyuki Fujita ◽  
Akira Ishihama ◽  
E. P. Greenberg

ABSTRACT LuxR is a ς70 RNA polymerase (RNAP)-dependent transcriptional activator that controls expression of the Vibrio fischeri lux operon in response to an acylhomoserine lactone-cell density signal. We have investigated whether the α-subunit C-terminal domain (αCTD) of RNAP is required for LuxR activity. A purified signal-independent, LuxR C-terminal domain-containing polypeptide (LuxRΔN) was used to study the activation of transcription from theluxI promoter in vitro. Initiation of luxoperon transcription was observed in the presence of LuxRΔN and wild-type RNAP but not in the presence of LuxRΔN and RNAPs with truncated αCTDs. We also studied the in vivo role of the RNAP αCTD in activation of lux transcription in Escherichia coli. This enabled a comparison of results obtained with full-length LuxR to those obtained with LuxRΔN. These in vivo studies indicated that both LuxR and LuxRΔN require the RNAP αCTD for activity. The results of DNase I protection studies showed that LuxRΔN-RNAP complexes can bind and protect the luxIpromoter, but with less efficacy when the αCTD is truncated in comparison to the wild type. Thus, both in vitro and in vivo experiments demonstrated that LuxR-dependent transcriptional activation of the lux operon involves the RNAP αCTD and suggest that αCTD-LuxR interactions may play a role in recruitment of RNAP to theluxI promoter.


2002 ◽  
Vol 184 (16) ◽  
pp. 4520-4528 ◽  
Author(s):  
Angela H. Finney ◽  
Robert J. Blick ◽  
Katsuhiko Murakami ◽  
Akira Ishihama ◽  
Ann M. Stevens

ABSTRACT During quorum sensing in Vibrio fischeri, the luminescence, or lux, operon is regulated in a cell density-dependent manner by the activator LuxR in the presence of an acylated homoserine lactone autoinducer molecule [N-(3-oxohexanoyl) homoserine lactone]. LuxR, which binds to the lux operon promoter at a position centered at −42.5 relative to the transcription initiation site, is thought to function as an ambidextrous activator making multiple contacts with RNA polymerase (RNAP). The specific role of the α-subunit C-terminal domain (αCTD) of RNAP in LuxR-dependent transcriptional activation of the lux operon promoter has been investigated. The effects of 70 alanine substitution variants of the α subunit were determined in vivo by measuring the rate of transcription of the lux operon via luciferase assays in recombinant Escherichia coli. The mutant RNAPs from strains exhibiting at least twofold-increased or -decreased activity in comparison to the wild type were further examined by in vitro assays. Since full-length LuxR has not been purified, an autoinducer-independent N-terminally truncated form of LuxR, LuxRΔN, was used for in vitro studies. Single-round transcription assays were performed using reconstituted mutant RNAPs in the presence of LuxRΔN, and 14 alanine substitutions in the αCTD were identified as having negative effects on the rate of transcription from the lux operon promoter. Five of these 14 α variants were also involved in the mechanisms of both LuxR- and LuxRΔN-dependent activation in vivo. The positions of these residues lie roughly within the 265 and 287 determinants in α that have been identified through studies of the cyclic AMP receptor protein and its interactions with RNAP. This suggests a model where residues 262, 265, and 296 in α play roles in DNA recognition and residues 290 and 314 play roles in α-LuxR interactions at the lux operon promoter during quorum sensing.


1999 ◽  
Vol 181 (12) ◽  
pp. 3864-3868 ◽  
Author(s):  
Wilma Ross ◽  
Julia Salomon ◽  
Walter M. Holmes ◽  
Richard L. Gourse

ABSTRACT The transcription factor FIS has been implicated in the regulation of several stable RNA promoters, including that for the major tRNALeu species in Escherichia coli, tRNA1 Leu. However, no evidence for direct involvement of FIS in tRNA1 Leu expression has been reported. We show here that FIS binds to a site upstream of the leuVpromoter (centered at −71) and that it directly stimulatesleuV transcription in vitro. A mutation in the FIS binding site reduces transcription from a leuV promoter in strains containing FIS but has no effect on transcription in strains lacking FIS, indicating that FIS contributes to leuV expression in vivo. We also find that RNA polymerase forms an unusual heparin-sensitive complex with the leuV promoter, having a downstream protection boundary of ∼−7, and that the first two nucleotides of the transcript, GTP and UTP, are required for formation of a heparin-stable complex that extends downstream of the transcription start site. These studies have implications for the regulation of leuV transcription.


2002 ◽  
Vol 184 (14) ◽  
pp. 3808-3814 ◽  
Author(s):  
Melicent C. Peck ◽  
Tamas Gaal ◽  
Robert F. Fisher ◽  
Richard L. Gourse ◽  
Sharon R. Long

ABSTRACT Sinorhizobium meliloti, a gram-negative soil bacterium, forms a nitrogen-fixing symbiotic relationship with members of the legume family. To facilitate our studies of transcription in S. meliloti, we cloned and characterized the gene for the α subunit of RNA polymerase (RNAP). S. meliloti rpoA encodes a 336-amino-acid, 37-kDa protein. Sequence analysis of the region surrounding rpoA identified six open reading frames that are found in the conserved gene order secY (SecY)-adk (Adk)-rpsM (S13)-rpsK (S11)-rpoA (α)-rplQ (L17) found in the α-proteobacteria. In vivo, S. meliloti rpoA expressed in Escherichia coli complemented a temperature sensitive mutation in E. coli rpoA, demonstrating that S. meliloti α supports RNAP assembly, sequence-specific DNA binding, and interaction with transcriptional activators in the context of E. coli. In vitro, we reconstituted RNAP holoenzyme from S. meliloti α and E. coli β, β′, and σ subunits. Similar to E. coli RNAP, the hybrid RNAP supported transcription from an E. coli core promoter and responded to both upstream (UP) element- and Fis-dependent transcription activation. We obtained similar results using purified RNAP from S. meliloti. Our results demonstrate that S. meliloti α functions are conserved in heterologous host E. coli even though the two α subunits are only 51% identical. The ability to utilize E. coli as a heterologous system in which to study the regulation of S. meliloti genes could provide an important tool for our understanding and manipulation of these processes.


2006 ◽  
Vol 188 (24) ◽  
pp. 8352-8359 ◽  
Author(s):  
India Hook-Barnard ◽  
Xanthia B. Johnson ◽  
Deborah M. Hinton

ABSTRACT Escherichia coli σ70-dependent promoters have typically been characterized as either −10/−35 promoters, which have good matches to both the canonical −10 and the −35 sequences or as extended −10 promoters (TGn/−10 promoters), which have the TGn motif and an excellent match to the −10 consensus sequence. We report here an investigation of a promoter, Pminor, that has a nearly perfect match to the −35 sequence and has the TGn motif. However, Pminor contains an extremely poor σ70 −10 element. We demonstrate that Pminor is active both in vivo and in vitro and that mutations in either the −35 or the TGn motif eliminate its activity. Mutation of the TGn motif can be compensated for by mutations that make the −10 element more canonical, thus converting the −35/TGn promoter to a −35/−10 promoter. Potassium permanganate footprinting on the nontemplate and template strands indicates that when polymerase is in a stable (open) complex with Pminor, the DNA is single stranded from positions −11 to +4. We also demonstrate that transcription from Pminor incorporates nontemplated ribonucleoside triphosphates at the 5′ end of the Pminor transcript, which results in an anomalous assignment for the start site when primer extension analysis is used. Pminor represents one of the few −35/TGn promoters that have been characterized and serves as a model for investigating functional differences between these promoters and the better-characterized −10/−35 and extended −10 promoters used by E. coli RNA polymerase.


2021 ◽  
Author(s):  
Helen Camakaris ◽  
Ji Yang ◽  
Tadashi Fujii ◽  
James Pittard

A novel selection was developed for RpoA α-CTD mutants altered in activation by the TyrR regulatory protein of E. coli K-12. This allowed the identification of an aspartate to asparagine substitution in residue 250 (DN250) as an Act - mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and substitutions DR250, RE310 and RD310 were all shown to be defective in activation. None of these mutations caused defects in UP regulation. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. TyrR Mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77 and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act - tyrR mutants were isolated in an rpoA + strain, adding positions R77, D97, K101, D118, R119, R121 and E141 to known residues, S95 and D103, and defining the ‘activation patch’ on the NTD of TyrR. These results support a model for activation of TyrR-regulated genes where the ‘activation patch’ on the TyrR NTD interacts with the ‘TyrR-specific patch’ on the αCTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed, and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants, as Activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene TyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence, and important plant interactions.


1993 ◽  
Vol 296 (3) ◽  
pp. 851-857 ◽  
Author(s):  
T Belyaeva ◽  
L Griffiths ◽  
S Minchin ◽  
J Cole ◽  
S Busby

The Escherichia coli cysG promoter has been subcloned and shown to function constitutively in a range of different growth conditions. Point mutations identify the -10 hexamer and an important 5′-TGN-3′ motif immediately upstream. The effects of different deletions suggest that specific sequences in the -35 region are not essential for the activity of this promoter in vivo. This conclusion was confirmed by in vitro run-off transcription assays. The DNAase I footprint of RNA polymerase at the cysG promoter reveals extended protection upstream of the transcript start, and studies with potassium permanganate as a probe suggest that the upstream region is distorted in open complexes. Taken together, the results show that the cysG promoter belongs to the ‘extended -10’ class of promoters, and the base sequence is similar to that of the P1 promoter of the E. coli galactose operon, another promoter in this class. In vivo, messenger initiated at the cysG promoter appears to be processed by cleavage at a site 41 bases downstream from the transcript start point.


Sign in / Sign up

Export Citation Format

Share Document