scholarly journals Characterization of a 12-Kilodalton Rhodanese Encoded byglpE of Escherichia coli and Its Interaction with Thioredoxin

2000 ◽  
Vol 182 (8) ◽  
pp. 2277-2284 ◽  
Author(s):  
W. Keith Ray ◽  
Gang Zeng ◽  
M. Benjamin Potters ◽  
Aqil M. Mansuri ◽  
Timothy J. Larson

ABSTRACT Rhodaneses catalyze the transfer of the sulfane sulfur from thiosulfate or thiosulfonates to thiophilic acceptors such as cyanide and dithiols. In this work, we define for the first time the gene, and hence the amino acid sequence, of a 12-kDa rhodanese fromEscherichia coli. Well-characterized rhodaneses are comprised of two structurally similar ca. 15-kDa domains. Hence, it is thought that duplication of an ancestral rhodanese gene gave rise to the genes that encode the two-domain rhodaneses. The glpEgene, a member of the sn-glycerol 3-phosphate (glp) regulon of E. coli, encodes the 12-kDa rhodanese. As for other characterized rhodaneses, kinetic analysis revealed that catalysis by purified GlpE occurs by way of an enzyme-sulfur intermediate utilizing a double-displacement mechanism requiring an active-site cysteine. TheKm s for SSO3 2− and CN− were 78 and 17 mM, respectively. The apparent molecular mass of GlpE under nondenaturing conditions was 22.5 kDa, indicating that GlpE functions as a dimer. GlpE exhibited ak cat of 230 s−1. Thioredoxin 1 from E. coli, a small multifunctional dithiol protein, served as a sulfur acceptor substrate for GlpE with an apparentKm of 34 μM when thiosulfate was near itsKm , suggesting that thioredoxin 1 or related dithiol proteins could be physiological substrates for sulfurtransferases. The overall degree of amino acid sequence identity between GlpE and the active-site domain of mammalian rhodaneses is limited (∼17%). This work is significant because it begins to reveal the variation in amino acid sequences present in the sulfurtransferases. GlpE is the first among the 41 proteins in COG0607 (rhodanese-related sulfurtransferases) of the database Clusters of Orthologous Groups of proteins (http://www.ncbi.nlm.nih.gov/COG/ ) for which sulfurtransferase activity has been confirmed.

1970 ◽  
Vol 117 (2) ◽  
pp. 341-346 ◽  
Author(s):  
S. S. Husain ◽  
G. Lowe

Stem bromelain that had been irreversibly inhibited with 1,3-dibromo[2-14C]-acetone was reduced with sodium borohydride and carboxymethylated with iodoacetic acid. After digestion with trypsin and α-chymotrypsin three radioactive peptides were isolated chromatographically. The amino acid sequences around the cross-linked cysteine and histidine residues were determined and showed a high degree of homology with those around the active-site cysteine and histidine residues of papain and ficin.


1970 ◽  
Vol 117 (2) ◽  
pp. 333-340 ◽  
Author(s):  
S. S. Husain ◽  
G. Lowe

Ficin that had been prepared from the latex of Ficus glabrata by salt fractionation and chromatography on carboxymethylcellulose was completely and irreversibly inhibited with 1,3-dibromo[2-14C]acetone and then treated with N-(4-dimethylamino-3,5-dinitrophenyl)maleimide in 6m-guanidinium chloride. After reduction and carboxymethylation of the labelled protein, it was digested with trypsin and α-chymotrypsin. Two radioactive peptides and two coloured peptides were isolated chromatographically and their sequences determined. The radioactive peptides revealed the amino acid sequences around the active-site cysteine and histidine residues and showed a high degree of homology with the omino acid sequence around the active-site cysteine and histidine residues in papain. The coloured peptides allowed the amino acid sequence around the buried cysteine residue in ficin to be determined.


1988 ◽  
Vol 263 (10) ◽  
pp. 4641-4646 ◽  
Author(s):  
J E Cronan ◽  
W B Li ◽  
R Coleman ◽  
M Narasimhan ◽  
D de Mendoza ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


1992 ◽  
Vol 282 (3) ◽  
pp. 747-752 ◽  
Author(s):  
O A M al-Bar ◽  
C D O'Connor ◽  
I G Giles ◽  
M Akhtar

A 1.2 kb BamHI fragment from pDK30 [Robinson, Kenan, Sweeney & Donachie (1986) J. Bacteriol. 167, 809-817] was cloned in pDOC55 [O'Connor & Timmis (1987) J. Bacteriol. 169, 4457-4482] to give two constructs, pDOC89 and pDOC87, in which the Escherichia coli D-alanine:D-alanine ligase (EC 6.3.2.4) gene (ddl) was placed under the control of the lac and lambda PL promoters respectively. Both constructs, when used to transform E. coli M72, gave similar levels of expression of the ddl gene. The expressed enzyme was purified to homogeneity and the amino acid sequence of its N-terminal region was found to be consistent with that predicted from the gene sequence, except that the N-terminal methionine was not present in the mature protein. [1(S)-Aminoethyl][(2RS)2-carboxy-1-octyl]phosphinic acid (I), previously shown to bind tightly to Enterococcus faecalis and Salmonella typhimurium D-alanine:D-alanine ligases following phosphorylation Parsons, Patchett, Bull, Schoen, Taub, Davidson, Combs, Springer, Gadebusch, Weissberger, Valiant, Mellin & Busch (1988) J. Med. Chem. 31, 1772-1778; Duncan & Walsh (1988) Biochemistry 27, 3709-3714], was found to be a classical slow-binding inhibitor of the E. coli ligase.


2002 ◽  
Vol 76 (11) ◽  
pp. 5829-5834 ◽  
Author(s):  
Yoshio Mori ◽  
Mohammed Ali Borgan ◽  
Naoto Ito ◽  
Makoto Sugiyama ◽  
Nobuyuki Minamoto

ABSTRACT Avian rotavirus NSP4 glycoproteins expressed in Escherichia coli acted as enterotoxins in suckling mice, as did mammalian rotavirus NSP4 glycoproteins, despite great differences in the amino acid sequences. The enterotoxin domain of PO-13 NSP4 exists in amino acid residues 109 to 135, a region similar to that reported in SA11 NSP4.


1997 ◽  
Vol 52 (11-12) ◽  
pp. 789-798 ◽  
Author(s):  
Hans-Jürgen Tiburzy ◽  
Richard J. Berzborn

Abstract Subunit I of chloroplast ATP synthase is reviewed until now to be equivalent to subunit b of Escherichia coli ATP synthase, whereas subunit II is suggested to be an additional subunit in photosynthetic ATP synthases lacking a counterpart in E. coli. After publication of some sequences of subunits II a revision of this assignment is necessary. Based on the analysis of 51 amino acid sequences of b-type subunits concerning similarities in primary structure, iso­electric point and a discovered discontinuous structural feature, our data provide evidence that chloroplast subunit II (subunit b' of photosynthetic eubacteria) and not chloroplast subunit I (subunit b of photosynthetic eubacteria) is the equivalent of subunit b of nonphoto­ synthetic eubacteria, and therefore does have a counterpart in e.g. E. coli. In consequence, structural features essential for function should be looked for on subunit II (b').


2004 ◽  
Vol 70 (6) ◽  
pp. 3298-3304 ◽  
Author(s):  
Khim Leang ◽  
Goro Takada ◽  
Akihiro Ishimura ◽  
Masashi Okita ◽  
Ken Izumori

ABSTRACT The gene encoding l-rhamnose isomerase (l-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the l-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of l-RhI from E. coli are conserved in that from P. stutzeri. The l-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of l-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant l-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant l-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60�C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.


2006 ◽  
Vol 34 (1) ◽  
pp. 143-145 ◽  
Author(s):  
T.A. Clarke ◽  
A.M. Hemmings ◽  
B. Burlat ◽  
J.N. Butt ◽  
J.A. Cole ◽  
...  

The recent crystallographic characterization of NrfAs from Sulfurospirillum deleyianum, Wolinella succinogenes, Escherichia coli and Desulfovibrio desulfuricans allows structurally conserved regions to be identified. Comparison of nitrite and sulphite reductase activities from different bacteria shows that the relative activities vary according to organism. By comparison of both amino acid sequences and structures, differences can be identified in the monomer–monomer interface and the active-site channel; these differences could be responsible for the observed variance in substrate activity and indicate that subtle changes in the NrfA structure may optimize the enzyme for different roles.


Sign in / Sign up

Export Citation Format

Share Document