clusters of orthologous groups
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 37)

H-INDEX

12
(FIVE YEARS 5)

2021 ◽  
Vol 7 (10) ◽  
Author(s):  
Ana C. Reis ◽  
Mónica V. Cunha

Animal tuberculosis (TB) is an emergent disease caused by Mycobacterium bovis , one of the animal-adapted ecotypes of the Mycobacterium tuberculosis complex (MTC). In this work, whole-genome comparative analyses of 70 M . bovis were performed to gain insights into the pan-genome architecture. The comparison across M. bovis predicted genome composition enabled clustering into the core- and accessory-genome components, with 2736 CDS for the former, while the accessory moiety included 3897 CDS, of which 2656 are restricted to one/two genomes only. These analyses predicted an open pan-genome architecture, with an average of 32 CDS added by each genome and show the diversification of discrete M. bovis subpopulations supported by both core- and accessory-genome components. The functional annotation of the pan-genome classified each CDS into one or several COG (Clusters of Orthologous Groups) categories, revealing ‘transcription’ (total average CDSs, n=258), ‘lipid metabolism and transport’ (n=242), ‘energy production and conversion’ (n=214) and ‘unknown function’ (n=876) as the most represented. The closer analysis of polymorphisms in virulence-related genes in a restrict group of M. bovis from a multi-host system enabled the identification of clade-monomorphic non-synonymous SNPs, illustrating clade-specific virulence landscapes and correlating with disease severity. This first comparative pan-genome study of a diverse collection of M. bovis encompassing all clonal complexes indicates a high percentage of accessory genes and denotes an open, dynamic non-conservative pan-genome structure, with high evolutionary potential, defying the canons of MTC biology. Furthermore, it shows that M. bovis can shape its virulence repertoire, either by acquisition and loss of genes or by SNP-based diversification, likely towards host immune evasion, adaptation and persistence.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12301
Author(s):  
Fengying Luo ◽  
Xinmei Fang ◽  
Han Liu ◽  
Tianhui Zhu ◽  
Shan Han ◽  
...  

Background Bambusa pervariabilis × Dendrocalamopsis grandis is a fast-growing bamboo that is widely introduced in southern China and has great economic and ecological benefits. In recent years, a blight of B. pervariabilis × D. grandis caused by Arthrinium phaeospermum has led to much branch damage and even death of entire bamboo forests. Methods To screen for resistance genes in B. pervariabilis × D. grandis, transcriptome sequencing technology was used to compare the gene expression profiles of different varieties of B. pervariabilis × D. grandis with variable resistance and the same varieties under different treatments. The Clusters of Orthologous Groups of Proteins (COG) database; the Gene Ontology (GO) database; and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to annotate and analyse the differentially expressed genes. Results A total of 26,157 and 11,648 differentially expressed genes were obtained in the different varieties after inoculation with A. phaeospermum and the same varieties after inoculation A. phaeospermum or sterile water, respectively. There were 23 co-upregulated DGEs and 143 co-downregulated DEGs in #3 and #8, #6 and #8, #6 and #3. There were 50 co-upregulated DGEs and 24 co-downregulated DEGs in the same varieties after inoculation A. phaeospermum or sterile water. The results showed that many genes involved in cell wall composition synthesis, redox reactions and signal transduction were significantly different after pathogen infection. Twenty-one candidate genes for blight resistance, such as pme53, cad5, pod, gdsl-ll and Myb4l, were found. The qRT-PCR results were consistent with the sequencing results, verifying their authenticity. These results provide a foundation for the further exploration of resistance genes and their functions.


2021 ◽  
Author(s):  
Hong-Bo Guo ◽  
Zhi-Fei Zhang ◽  
Si-Yu Wang ◽  
Ji-Kang Yang ◽  
Xi-Yao Xing ◽  
...  

Abstract Coprinus comatus, widely known as “Jituigu”, is an important commodity and food in China. The yield of C. comatus, however, is substantially reduced by the autolysis of the fruiting bodies after harvest. To gain insight into the molecular mechanism underlying this autolysis, we divided the growth of C. comatus fruiting bodies into four stages: infant stage (I), mature stage (M), discolored stage (D), and autolysis stage (A). We then subjected these stages to de novo transcriptomic analysis using high-throughput Illumina sequencing. A total of 12,946 unigenes were annotated and analyzed with the Gene Ontology (GO), Clusters of Orthologous Groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG). We analyzed the differentially expressed genes (DEGs) between stages I and M, M and D, and D and A. Because the changes from M to D are thought to be related to autolysis, we focused on the DEGs between these two stages. We found that the pathways related to metabolic activity began to decline in the transition from M to D. In contrast, expression levels of chitinases, β-1,3-glucanases, and the ubiquitin-conjugating enzyme E2 related to degradation of cell walls were higher in D than in M. In addition, 20 genes of interest were analyzed by quantitative real-time PCR to verify their expression profiles at the four developmental stages. This study, which is the first to describe the transcriptome of C. comatus, provides a foundation for future studies concerning the molecular basis of the autolysis of its fruiting bodies.


2021 ◽  
Author(s):  
Jiahong Tang ◽  
Dun Deng ◽  
Maopeng Song ◽  
Zhichang Liu ◽  
Sanmei Ma ◽  
...  

AbstractThe whole genomes of three strains were sequenced and annotated. COG (Clusters of Orthologous Groups) and GO (Gene Ontology) annotations of the protein-coding genes from three strains show a conservation of genome-wide protein functions in genus Pseudomonas. However, the AFB1-degrading strains HAI2 and HT3 harbor much more genes belonged to the pathway of xenobiotics biodegradation and metabolism than non-degrading strain 48. Besides, the enzyme families potentially involved in the AFB1 degradation of bacteria are more abundant in the two AFB1-degrading strains. A pan-genome profile was then formed by comparing the genomes against other reference genomes of the corresponding Pseudomonas species. Accordingly, a total of 1,528 genes were found to be specific in AFB1-degrading strains, and 65 genes of them are related to oxidoreductase activity.


2021 ◽  
Author(s):  
Yunbo Liu ◽  
Ziyao Zhang ◽  
Hang Fan ◽  
Yun Tan ◽  
Xiaofu Zhou ◽  
...  

Abstract As an alpine plant,Rhododendron chrysanthum (R. chrysanthum) has evolved cold resistance mechanisms and become a valuable plant resource with the responsive mechanism of cold stress. In my study, we adopt the phosphoproteomic and proteomic analysis combining with physiological measurement to illustrate the responsive mechanism of R. chrysanthum seedling under cold (4℃) stress. After chilling for 12 h, 350 significantly changed proteins and 274 significantly changed phosphoproteins were detected. Clusters of Orthologous Groups(COG)analysis showed that significantly changed proteins and phosphoproteins were mainly involved in signal transduction and energy production and conversion under cold stress. The results indicated photosynthesis was inhibited under cold stress, but cold induced calcium-mediated signaling, reactive oxygen species (ROS) homeostasis and other transcription regulation factors could protect plants from the destruction caused by cold stress. These results provide a detailed insight into the cold stress response and defense mechanisms of R. chrysanthum leaves at the phosphoproteome level.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1060
Author(s):  
Sajid Iqbal ◽  
John Vollmers ◽  
Hussnain Ahmed Janjua

The present study reports the isolation of antibacterial exhibiting Bacillus pumilus (B. pumilus) SF-4 from soil field. The genome of this strain SF-4 was sequenced and analyzed to acquire in-depth genomic level insight related to functional diversity, evolutionary history, and biosynthetic potential. The genome of the strain SF-4 harbor 12 Biosynthetic Gene Clusters (BGCs) including four Non-ribosomal peptide synthetases (NRPSs), two terpenes, and one each of Type III polyketide synthases (PKSs), hybrid (NRPS/PKS), lipopeptide, β-lactone, and bacteriocin clusters. Plant growth-promoting genes associated with de-nitrification, iron acquisition, phosphate solubilization, and nitrogen metabolism were also observed in the genome. Furthermore, all the available complete genomes of B. pumilus strains were used to highlight species boundaries and diverse niche adaptation strategies. Phylogenetic analyses revealed local diversification and indicate that strain SF-4 is a sister group to SAFR-032 and 150a. Pan-genome analyses of 12 targeted strains showed regions of genome plasticity which regulate function of these strains and proposed direct strain adaptations to specific habitats. The unique genome pool carries genes mostly associated with “biosynthesis of secondary metabolites, transport, and catabolism” (Q), “replication, recombination and repair” (L), and “unknown function” (S) clusters of orthologous groups (COG) categories. Moreover, a total of 952 unique genes and 168 exclusively absent genes were prioritized across the 12 genomes. While newly sequenced B. pumilus SF-4 genome consists of 520 accessory, 59 unique, and seven exclusively absent genes. The current study demonstrates genomic differences among 12 B. pumilus strains and offers comprehensive knowledge of the respective genome architecture which may assist in the agronomic application of this strain in future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elif Koeksoy ◽  
Oliver M. Bezuidt ◽  
Timm Bayer ◽  
Clara S. Chan ◽  
David Emerson

Twisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The “stalk formation in Zetaproteobacteria” (sfz) cluster comprises six genes (sfz1-sfz6), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologs, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point toward a c-di-GMP regulated surface attachment function of stalks during sessile growth.


2021 ◽  
Vol 7 (4) ◽  
pp. 287
Author(s):  
Carolina Santiago ◽  
Teresa Rito ◽  
Daniel Vieira ◽  
Ticiana Fernandes ◽  
Célia Pais ◽  
...  

Saccharomyces cerevisiae is the most commonly used yeast in wine, beer, and bread fermentations. However, Torulaspora delbrueckii has attracted interest in recent years due to its properties, ranging from its ability to produce flavor- and aroma-enhanced wine to its ability to survive longer in frozen dough. In this work, publicly available genomes of T. delbrueckii were explored and their annotation was improved. A total of 32 proteins were additionally annotated for the first time in the type strain CBS1146, in comparison with the previous annotation available. In addition, the annotation of the remaining three T. delbrueckii strains was performed for the first time. eggNOG-mapper was used to perform the functional annotation of the deduced T. delbrueckii coding genes, offering insights into its biological significance, and revealing 24 clusters of orthologous groups (COGs), which were gathered in three main functional categories: information storage and processing (28% of the proteins), cellular processing and signaling (27%), and metabolism (23%). Small intraspecies variability was found when considering the functional annotation of the four available T. delbrueckii genomes. A comparative study was also conducted between the T. delbrueckii genome and those from 386 fungal species, revealing a high number of homologous genes with species from the Zygotorulaspora and Zygosaccharomyces genera, but also with Lachancea and S. cerevisiae. Lastly, the phylogenetic placement of T. delbrueckii was clarified using the core homologs that were found across 204 common protein sequences of 386 fungal species and strains.


2021 ◽  
Author(s):  
E. Koeksoy ◽  
O.M. Bezuidt ◽  
T. Bayer ◽  
C.S. Chan ◽  
D. Emerson

AbstractTwisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The “stalk formation in Zetaproteobacteria” (sfz) cluster comprises six genes (sfz1-sfz6), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologues, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point towards a c-di-GMP regulated surface attachment function of stalks during sessile growth.


2021 ◽  
Vol 368 (5) ◽  
Author(s):  
Chen Yang ◽  
Zhe Liu ◽  
Shuai Yu ◽  
Kun Ye ◽  
Xin Li ◽  
...  

Abstract Elizabethkingia are found to cause severe neonatal meningitis, nosocomial pneumonia, endocarditis and bacteremia. However, there are few studies on Elizabethkingia genus by comparative genomic analysis. In this study, three species of Elizabethkingia were found: E. meningoseptica, E. anophelis and E. miricola. Resistance genes and associated proteins of seven classes of antibiotics including beta-lactams, aminoglycosides, macrolides, tetracyclines, quinolones, sulfonamides and glycopeptides, as well as multidrug resistance efflux pumps were identified from 20 clinical isolates of Elizabethkingia by whole-genome sequence. Genotype and phenotype displayed a good consistency in beta-lactams, aminoglycosides and glycopeptides, while contradictions exhibited in tetracyclines, quinolones and sulfonamides. Virulence factors and associated genes such as hsp60 (htpB), exopolysaccharide (EPS) (galE/pgi), Mg2+ transport (mgtB/mgtE) and catalase (katA/katG) existed in all clinical and reference strains. The functional analysis of the clusters of orthologous groups indicated that ‘metabolism’ occupied the largest part in core genome, ‘information storage and processing’ was the largest group in both accessory genome and unique genome. Abundant mobile elements were identified in E. meningoseptica and E. anophelis. The most significant finding in our study was that a single clone of E. anophelis had been circulating within diversities of departments in a clinical setting for nearly 18 months.


Sign in / Sign up

Export Citation Format

Share Document