scholarly journals Efg1, a Morphogenetic Regulator in Candida albicans, Is a Sequence-Specific DNA Binding Protein

2001 ◽  
Vol 183 (13) ◽  
pp. 4090-4093 ◽  
Author(s):  
Ping Leng ◽  
Philip R. Lee ◽  
Hong Wu ◽  
Alistair J. P. Brown

ABSTRACT Efg1 is essential for hyphal development in the human pathogenCandida albicans under most conditions. Efg1 is related to basic helix-loop-helix regulators, and therefore most workers presume that Efg1 is a transcription factor. Here we confirm that Efg1 is a DNA binding protein that can interact specifically with the E box.

1992 ◽  
Vol 12 (8) ◽  
pp. 3449-3459
Author(s):  
A L Nielsen ◽  
N Pallisgaard ◽  
F S Pedersen ◽  
P Jørgensen

The enhancer region of Akv murine leukemia virus contains the sequence motif ACAGATGG. This sequence is homologous to the E-box motif originally defined as a regulatory element in the enhancers of immunoglobulin mu and kappa genes. We have used double-stranded oligonucleotide probes, corresponding to the E box of the murine leukemia virus Akv, to screen a randomly primed lambda gt11 cDNA expression library made from mouse NIH 3T3 fibroblast RNA. We have identified seven lambda clones expressing DNA-binding proteins representing two different genes termed ALF1 and ALF2. The results of sequencing ALF2 cDNA suggests that we have recovered the gene for the basic-helix-loop-helix transcription factor A1, the murine analog of the human transcription factor E47. The cDNA sequence of ALF1 codes for a new member of the basic-helix-loop-helix protein family. Two splice variants of ALF1 cDNA have been found, differing by a 72-bp insertion, coding for putative proteins of 682 and 706 amino acids. The two ALF1 mRNAs are expressed at various levels in mouse tissues. In vitro DNA binding assays, using prokaryotically expressed ALF1 proteins, demonstrated specific binding of the ALF1 proteins to the Akv murine leukemia virus E-box motif ACAGATGG. Expression in NIH 3T3 fibroblasts of GAL4-ALF1 chimeric protein stimulated expression from a minimal promoter linked to a GAL4 binding site, indicating the existence of a transcriptional activator domain in ALF1.


1992 ◽  
Vol 12 (8) ◽  
pp. 3449-3459 ◽  
Author(s):  
A L Nielsen ◽  
N Pallisgaard ◽  
F S Pedersen ◽  
P Jørgensen

The enhancer region of Akv murine leukemia virus contains the sequence motif ACAGATGG. This sequence is homologous to the E-box motif originally defined as a regulatory element in the enhancers of immunoglobulin mu and kappa genes. We have used double-stranded oligonucleotide probes, corresponding to the E box of the murine leukemia virus Akv, to screen a randomly primed lambda gt11 cDNA expression library made from mouse NIH 3T3 fibroblast RNA. We have identified seven lambda clones expressing DNA-binding proteins representing two different genes termed ALF1 and ALF2. The results of sequencing ALF2 cDNA suggests that we have recovered the gene for the basic-helix-loop-helix transcription factor A1, the murine analog of the human transcription factor E47. The cDNA sequence of ALF1 codes for a new member of the basic-helix-loop-helix protein family. Two splice variants of ALF1 cDNA have been found, differing by a 72-bp insertion, coding for putative proteins of 682 and 706 amino acids. The two ALF1 mRNAs are expressed at various levels in mouse tissues. In vitro DNA binding assays, using prokaryotically expressed ALF1 proteins, demonstrated specific binding of the ALF1 proteins to the Akv murine leukemia virus E-box motif ACAGATGG. Expression in NIH 3T3 fibroblasts of GAL4-ALF1 chimeric protein stimulated expression from a minimal promoter linked to a GAL4 binding site, indicating the existence of a transcriptional activator domain in ALF1.


FEBS Letters ◽  
1999 ◽  
Vol 463 (3) ◽  
pp. 307-311 ◽  
Author(s):  
Takashi Sato ◽  
M.Cecilia Lopez ◽  
Shigemi Sugioka ◽  
Yoshifumi Jigami ◽  
Henry V. Baker ◽  
...  

2001 ◽  
Vol 21 (19) ◽  
pp. 6418-6428 ◽  
Author(s):  
Shelley Lane ◽  
Song Zhou ◽  
Ting Pan ◽  
Qian Dai ◽  
Haoping Liu

ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.


1994 ◽  
Vol 14 (12) ◽  
pp. 8343-8355
Author(s):  
M L Whitelaw ◽  
J A Gustafsson ◽  
L Poellinger

Gene regulation by dioxins is mediated via the dioxin receptor, a ligand-dependent basic helix-loop-helix (bHLH)/PAS transcription factor. The latent dioxin receptor responds to dioxin signalling by forming an activated heterodimeric complex with a specific bHLH partner, Arnt, an essential process for target DNA recognition. We have analyzed the transactivating potential within this heterodimeric complex by dissecting it into individual subunits, replacing the dimerization and DNA-binding bHLH motifs with heterologous zinc finger DNA-binding domains. The uncoupled Arnt chimera, maintaining 84% of Arnt residues, forms a potent and constitutive transcription factor. Chimeric proteins show that the dioxin receptor also harbors a strong transactivation domain in the C terminus, although this activity was silenced by inclusion of 82 amino acids from the central ligand-binding portion of the dioxin receptor. This central repression region conferred binding of the molecular chaperone hsp90 upon otherwise constitutive chimeras in vitro, indicating that hsp90 has the ability to mediate a cis-repressive function on distant transactivation domains. Importantly, when the ligand-binding domain of the dioxin receptor remained intact, the ability of this hsp90-binding activity to confer repression became conditional rather than irreversible. Our data are consistent with a model in which crucial activities of the dioxin receptor, such as dimerization with Arnt and transactivation, are conditionally repressed by the central ligand- and-hsp90-binding region of the receptor. In contrast, the Arnt protein appears to be free from any repressive activity. Moreover, within the context of the dioxin response element (xenobiotic response element), the C terminus of Arnt conferred a potent, dominating transactivation function onto the native bHLH heterodimeric complex. Finally, the relative transactivation potencies of the individual dioxin receptor and Arnt chimeras varied with cell type and promoter architecture, indicating that the mechanisms for transcriptional activation may differ between these two subunits and that in the native complex the transactivation pathway may be dependent upon cell-specific and promoter contexts.


Sign in / Sign up

Export Citation Format

Share Document