scholarly journals Adhesion of Type 1-Fimbriated Escherichia coli to Abiotic Surfaces Leads to Altered Composition of Outer Membrane Proteins

2001 ◽  
Vol 183 (8) ◽  
pp. 2445-2453 ◽  
Author(s):  
Karen Otto ◽  
Joakim Norbeck ◽  
Thomas Larsson ◽  
Karl-Anders Karlsson ◽  
Malte Hermansson

ABSTRACT Phenotypic differences between planktonic bacteria and those attached to abiotic surfaces exist, but the mechanisms involved in the adhesion response of bacteria are not well understood. By the use of two-dimensional (2D) polyacrylamide gel electrophoresis, we have demonstrated that attachment of Escherichia coli to abiotic surfaces leads to alteration in the composition of outer membrane proteins. A major decrease in the abundance of resolved proteins was observed during adhesion of type 1-fimbriated E. colistrains, which was at least partly caused by proteolysis. Moreover, a study of fimbriated and nonfimbriated mutants revealed that these changes were due mainly to type 1 fimbria-mediated surface contact and that only a few changes occurred in the outer membranes of nonfimbriated mutant strains. Protein synthesis and proteolytic degradation were involved to different extents in adhesion of fimbriated and nonfimbriated cells. While protein synthesis appeared to affect adhesion of only the nonfimbriated strain, proteolytic activity mostly seemed to contribute to adhesion of the fimbriated strain. Using matrix-assisted laser desorption ionization–time of flight mass spectrometry, six of the proteins resolved by 2D analysis were identified as BtuB, EF-Tu, OmpA, OmpX, Slp, and TolC. While the first two proteins were unaffected by adhesion, the levels of the last four were moderately to strongly reduced. Based on the present results, it may be suggested that physical interactions between type 1 fimbriae and the surface are part of a surface-sensing mechanism in which protein turnover may contribute to the observed change in composition of outer membrane proteins. This change alters the surface characteristics of the cell envelope and may thus influence adhesion.

2005 ◽  
Vol 187 (6) ◽  
pp. 1913-1922 ◽  
Author(s):  
Anindya S. Ghosh ◽  
Kevin D. Young

ABSTRACT In bacteria, several physiological processes once thought to be the products of uniformly dispersed reactions are now known to be highly asymmetric, with some exhibiting interesting geometric localizations. In particular, the cell envelope of Escherichia coli displays a form of subcellular differentiation in which peptidoglycan and outer membrane proteins at the cell poles remain stable for generations while material in the lateral walls is diluted by growth and turnover. To determine if material in the side walls was organized in any way, we labeled outer membrane proteins with succinimidyl ester-linked fluorescent dyes and then grew the stained cells in the absence of dye. Labeled proteins were not evenly dispersed in the envelope but instead appeared as helical ribbons that wrapped around the outside of the cell. By staining the O8 surface antigen of E. coli 2443 with a fluorescent derivative of concanavalin A, we observed a similar helical organization for the lipopolysaccharide (LPS) component of the outer membrane. Fluorescence recovery after photobleaching indicated that some of the outer membrane proteins remained freely diffusible in the side walls and could also diffuse into polar domains. On the other hand, the LPS O antigen was virtually immobile. Thus, the outer membrane of E. coli has a defined in vivo organization in which a subfraction of proteins and LPS are embedded in stable domains at the poles and along one or more helical ribbons that span the length of this gram-negative rod.


2004 ◽  
Vol 186 (1) ◽  
pp. 226-234 ◽  
Author(s):  
Karen Otto ◽  
Malte Hermansson

ABSTRACT During the initial steps of biofilm formation, bacteria have to adapt to a major change in their environment. The adhesion-induced phenotypic changes in a type 1 fimbriated Escherichia coli strain included reductions in the levels of several outer membrane proteins, one of which was identified as OmpX. Here, the phenotypes of mutant strains that differ at the ompX locus were studied with regard to adhesion, cell surface properties, and resistance to stress and antimicrobial compounds. The kinetics of adhesion were measured online by an extended quartz crystal microbalance technique for wild-type and mutant strains with a fimbriated or nonfimbriated background. Deletion of ompX led to significantly increased cell-surface contact in fimbriated strains but to decreased cell-surface contact in a nonfimbriated strain. Phenotypic characterization of the ompX mutant demonstrated that ompX interferes with proper regulation of cell surface structures that play a key role in mediating firm contact of the cell with a surface (i.e., type 1 fimbriae, flagellae, and exopolysaccharides). These phenotypic changes were accompanied by increased tolerance to several antibiotic compounds and sodium dodecyl sulfate. Based on these results, we propose that changes in the composition of outer membrane proteins during fimbria-mediated adhesion may be part of a coordinated adaptive response to the attached mode of growth.


Sign in / Sign up

Export Citation Format

Share Document