scholarly journals Allelic Diversity and Recombination inCampylobacter jejuni

2001 ◽  
Vol 183 (8) ◽  
pp. 2553-2559 ◽  
Author(s):  
Sebastian Suerbaum ◽  
Marc Lohrengel ◽  
Agnes Sonnevend ◽  
Florian Ruberg ◽  
Manfred Kist

ABSTRACT The allelic diversity and population structure ofCampylobacter jejuni were studied by multilocus nucleotide sequence analysis. Sequences from seven housekeeping genes were obtained from 32 C. jejuni isolates isolated from enteritis patients in Germany, Hungary, Thailand, and the United States. Also included was strain NCTC 11168, the complete genomic sequence of which has recently been published. For all loci analyzed, multiple strains carried identical alleles. The frequency of synonymous and nonsynonymous sequence polymorphisms was low. The number of unique alleles per locus ranged from 9 to 15. These alleles occurred in 31 different combinations (sequence types), so that all but two pairs of strains could be distinguished from each other. Sequences were analyzed for evidence of recombination by the homoplasy test and split decomposition. These analyses showed that intraspecific recombination is frequent in C. jejuni and has generated extensive diversity of allelic profiles from a small number of polymorphic nucleotides.

Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1473-1473 ◽  
Author(s):  
B. E. Lockhart ◽  
M. L. Daughtrey

Stunting, chlorosis, and light yellow mottling resembling symptoms of nutrient deficiency were observed in angelonia (Angelonia angustifolia) in commercial production in New York. Numerous, filamentous particles 520 to 540 nm long and spherical virus particles 30 nm in diameter were observed by transmission electron microscopy (TEM) in negatively stained partially purified extracts of symptomatic Angelonia leaf tissue. Two viruses, the filamentous potexvirus Alternanthera mosaic virus (AltMV) and the spherical carmovirus Angelonia flower break virus (AnFBV) were subsequently identified on the basis of nucleotide sequence analysis of amplicons generated by reverse transcription (RT)-PCR using total RNA isolated from infected leaf tissue. A 584-bp portion of the replicase-encoding region of the AltMV genome was obtained with the degenerate primers Potex 2RC (5′-AGC ATR GNN SCR TCY TG-3′) and Potex 5 (5′-CAY CAR CAR GCM AAR GAT GA-3′) (3). Forward (AnFBV CP 1F-5′-AGC CTG GCA ATC TGC GTA CTG ATA-3′) and reverse (AnFBV CP 1R-5′-AAT ACC GCC CTC CTG TTT GGA AGT-3′) primers based on the published AnFBV genomic sequence (GenBank Accession No. NC_007733) were used to amplify a portion of the viral coat protein (CP) gene. The nucleotide sequence of the amplicon generated using the potexvirus-specific primers (GenBank Accession No. EU679362) was 99% identical to the published AltMV (GenBank Accession No. NC_007731) sequence and the nucleotide sequence of the amplicon obtained using the AnFBV CP primers was 99% identical to the published AnFBV genomic sequence (GenBank Accession No. EU679363). AnFBV occurs widely in angelonia (1) and AltMV has been identified in phlox (2). These data confirm the presence of AltMV and AnFBV in diseased angelonia plants showing stunting and nutrient deficiency-like symptoms and substantiates, to our knowledge, this first report of AltMV in angelonia in the United States. References: (1) S. Adkins et al. Phytopathology 96:460, 2006. (2) J. Hammond et al. Arch. Virol. 151:477, 2006. (3) R. A. A. van der Vlugt and M. Berendeson. Eur. J. Plant Pathol. 108:367, 2002.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1286
Author(s):  
Liudmila N. Yashina ◽  
Sergey A. Abramov ◽  
Alexander V. Zhigalin ◽  
Natalia A. Smetannikova ◽  
Tamara A. Dupal ◽  
...  

The discovery of genetically distinct hantaviruses (family Hantaviridae) in multiple species of shrews, moles and bats has revealed a complex evolutionary history involving cross-species transmission. Seewis virus (SWSV) is widely distributed throughout the geographic ranges of its soricid hosts, including the Eurasian common shrew (Sorex araneus), tundra shrew (Sorex tundrensis) and Siberian large-toothed shrew (Sorex daphaenodon), suggesting host sharing. In addition, genetic variants of SWSV, previously named Artybash virus (ARTV) and Amga virus, have been detected in the Laxmann’s shrew (Sorex caecutiens). Here, we describe the geographic distribution and phylogeny of SWSV and Altai virus (ALTV) in Asian Russia. The complete genomic sequence analysis showed that ALTV, also harbored by the Eurasian common shrew, is a new hantavirus species, distantly related to SWSV. Moreover, Lena River virus (LENV) appears to be a distinct hantavirus species, harbored by Laxmann’s shrews and flat-skulled shrews (Sorex roboratus) in Eastern Siberia and far-eastern Russia. Another ALTV-related virus, which is more closely related to Camp Ripley virus from the United States, has been identified in the Eurasian least shrew (Sorex minutissimus) from far-eastern Russia. Two highly divergent viruses, ALTV and SWSV co-circulate among common shrews in Western Siberia, while LENV and the ARTV variant of SWSV co-circulate among Laxmann’s shrews in Eastern Siberia and far-eastern Russia. ALTV and ALTV-related viruses appear to belong to the Mobatvirus genus, while SWSV is a member of the Orthohantavirus genus. These findings suggest that ALTV and ALTV-related hantaviruses might have emerged from ancient cross-species transmission with subsequent diversification within Sorex shrews in Eurasia.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1212
Author(s):  
J. Spencer Johnston ◽  
Carl E. Hjelmen

Next-generation sequencing provides a nearly complete genomic sequence for model and non-model species alike; however, this wealth of sequence data includes no road map [...]


2016 ◽  
Vol 72 (5) ◽  
pp. 628-633 ◽  
Author(s):  
Yan Li ◽  
Min Wang ◽  
Qian Liu ◽  
Xue Song ◽  
Duobing Wang ◽  
...  

2014 ◽  
Vol 84 (6) ◽  
pp. 595-596
Author(s):  
L.-M. Yindom ◽  
G. Wong ◽  
T. I. de Silva ◽  
S. L. Rowland-Jones

2013 ◽  
Vol 1 (5) ◽  
Author(s):  
I. N. Dominova ◽  
I. V. Kublanov ◽  
O. A. Podosokorskaya ◽  
K. S. Derbikova ◽  
M. V. Patrushev ◽  
...  

2012 ◽  
Vol 86 (10) ◽  
pp. 5965-5965 ◽  
Author(s):  
Y. Wu ◽  
A. Cheng ◽  
M. Wang ◽  
Q. Yang ◽  
D. Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document