swine feces
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 9 (11) ◽  
pp. 2401
Author(s):  
Ross C. Beier ◽  
Kathleen Andrews ◽  
Michael E. Hume ◽  
Muhammad Umar Sohail ◽  
Roger B. Harvey ◽  
...  

Staphylococcus aureus (S. aureus) causes gastrointestinal illness worldwide. Disinfectants are used throughout the food chain for pathogenic bacteria control. We investigated S. aureus bioavailability in swine Mandibular lymph node tissue (MLT) and pork sausage meat (PSM), established susceptibility values for S. aureus to disinfectants, and determined the multilocus sequence type of MRSA strains. Antimicrobial and disinfectant susceptibility profiles were determined for 164 S. aureus strains isolated from swine feces (n = 63), MLT (n = 49) and PSM (n = 52). No antimicrobial resistance (AMR) was detected to daptomycin, nitrofurantoin, linezolid, and tigecycline, while high AMR prevalence was determined to erythromycin (50.6%), tylosin tartrate (42.7%), penicillin (72%), and tetracycline (68.9%). Methicillin-resistant S. aureus (MRSA) strains, ST398 (n = 6) and ST5 (n = 1), were found in the MLT and PSM, 4 MRSA in MLT and 3 MRSA strains in the PSM. About 17.5% of feces strains and 41.6% of MLT and PSM strains were resistant to chlorhexidine. All strains were susceptible to triclosan and benzalkonium chloride, with no cross-resistance between antimicrobials and disinfectants. Six MRSA strains had elevated susceptibilities to 18 disinfectants. The use of formaldehyde and tris(hydroxylmethyl)nitromethane in DC&R was not effective, which can add chemicals to the environment. Didecyldimethylammonium chloride and benzyldimethylhexadecylammonium chloride were equally effective disinfectants. ST398 and ST5 MRSA strains had elevated susceptibilities to 75% of the disinfectants tested. This study establishes susceptibility values for S. aureus strains from swine feces, mandibular lymph node tissue, and commercial pork sausage against 24 disinfectants. Since it was demonstrated that S. aureus and MRSA strains can be found deep within swine lymph node tissue, it may be beneficial for the consumer if raw swine lymph node tissue is not used in uncooked food products and pork sausage.


2021 ◽  
Vol 9 (7) ◽  
pp. 1426
Author(s):  
Enikő Fehér ◽  
Eszter Mihalov-Kovács ◽  
Eszter Kaszab ◽  
Yashpal S. Malik ◽  
Szilvia Marton ◽  
...  

Replication-associated protein (Rep)-encoding single-stranded DNA (CRESS DNA) viruses are a diverse group of viruses, and their persistence in the environment has been studied for over a decade. However, the persistence of CRESS DNA viruses in herds of domestic animals has, in some cases, serious economic consequence. In this study, we describe the diversity of CRESS DNA viruses identified during the metagenomics analysis of fecal samples collected from a single swine herd with apparently healthy animals. A total of nine genome sequences were assembled and classified into two different groups (CRESSV1 and CRESSV2) of the Cirlivirales order (Cressdnaviricota phylum). The novel CRESS DNA viral sequences shared 85.8–96.8% and 38.1–94.3% amino acid sequence identities for the Rep and putative capsid protein sequences compared to their respective counterparts with extant GenBank record. Data presented here show evidence for simultaneous infection of swine herds with multiple novel CRESS DNA viruses, including po-circo-like viruses and fur seal feces-associated circular DNA viruses. Given that viral genomes with similar sequence and structure have been detected in swine fecal viromes from independent studies, investigation of the association between presence of CRESS DNA viruses and swine health conditions seems to be justified.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 377
Author(s):  
Moo-Joon Shim ◽  
Seung-Mok Lee

Cu and Zn are known to be abundant in swine feces; hence, concentrations of these metals need to be lowered before swine feces are applied to land in order to prevent potential environmental problems. The main objective of this study was to develop an appropriate chemical process to remove Cu and Zn from swine feces using acid extractions. The removal efficiencies of Cu and Zn decreased in the order of H2SO4 > HNO3 > organic acids (citric and oxalic acids). Owing to the highest removal efficiencies of Cu and Zn by using H2SO4, it was selected for further elimination of Cu and Zn from swine feces. By using H2SO4, the optimal concentration, solid-to-liquid ratio, and reaction time were 2%, 1:50, and 8 h, respectively. At the optimum conditions, Cu concentration was decreased from 198 mg/kg to 40.1 mg/kg and Zn concentration from 474 mg/kg to 80.0 mg/kg, with removal rates of 79.7% and 83.1%, respectively. The low Cu removal efficiency, resulting from the strong complexation between Cu and organic matter of swine feces, was improved by the increase in the reaction time and H2SO4 solution concentrations. However, about half of the total nitrogen (TN) was also removed by using H2SO4, indicating that the swine feces treated with H2SO4 may have poor value as fertilizer. Additional studies are required to find an optimal method to maintain TN concentrations while simultaneously removing Cu and Zn.


2021 ◽  
Vol 63 (2) ◽  
pp. 461-464
Author(s):  
Hyeri Kim ◽  
Jae Hyoung Cho ◽  
Jin Ho Cho ◽  
Minho Song ◽  
Hakdong Shin ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 111-120
Author(s):  
Agnieszka Wawrzyniak ◽  
Andrzej Lewicki ◽  
Patrycja Pochwatka ◽  
Piotr Sołowiej ◽  
Wojciech Czekała
Keyword(s):  

2020 ◽  
Vol 8 (12) ◽  
pp. 1887
Author(s):  
Laurin Gierse ◽  
Alexander Meene ◽  
Daniel Schultz ◽  
Theresa Schwaiger ◽  
Claudia Karte ◽  
...  

Swine are regarded as promising biomedical models, but the dynamics of their gastrointestinal microbiome have been much less investigated than that of humans or mice. The aim of this study was to establish an integrated multi-omics protocol to investigate the fecal microbiome of healthy swine. To this end, a preparation and analysis protocol including integrated sample preparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integration linked microbiome composition with function, and metabolic activity with protein inventories, i.e., 16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites. 16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated by Prevotellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae and Clostridiaceae. Similar microbiome compositions in feces and colon, but not ileum samples, were observed, showing that feces can serve as minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition, e.g., temporal decreased abundance of Lactobacillaceae and Streptococcaceae during the experiment, were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed a rather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associated metaproteome functions, pointing towards functional redundancy among microbiome constituents. In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomy and functionality of the intestinal microbiome of swine.


2020 ◽  
Vol 73 (5) ◽  
pp. 265-273
Author(s):  
Kumiko SATO ◽  
Akiko NAGAI ◽  
Jun OBARA ◽  
Chiharu ENDO ◽  
Tetsuya HAYASHI ◽  
...  
Keyword(s):  

2020 ◽  
Vol 172 ◽  
pp. 105892
Author(s):  
Jeffrey C. Chandler ◽  
Alan B. Franklin ◽  
Sarah N. Bevins ◽  
Kevin T. Bentler ◽  
Jonas Bonnedahl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document