scholarly journals The hetF Gene Product Is Essential to Heterocyst Differentiation and Affects HetR Function in the Cyanobacterium Nostoc punctiforme

2001 ◽  
Vol 183 (8) ◽  
pp. 2654-2661 ◽  
Author(s):  
Francis C. Y. Wong ◽  
John C. Meeks

ABSTRACT A novel gene, hetF, was identified as essential for heterocyst development in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133. In the absence of combined nitrogen, hetF mutants were unable to differentiate heterocysts, whereas extra copies of hetF intrans induced the formation of clusters of heterocysts. Sequences hybridizing to a hetF probe were detected only in heterocyst-forming cyanobacteria. The inactivation and multicopy effects of hetF were similar to those of hetR, which encodes a self-degrading serine protease thought to be a central regulator of heterocyst development. Increased transcription ofhetR begins in developing cells 3 to 6 h after deprivation for combined nitrogen (N step-down), and the HetR protein specifically accumulates in heterocysts. In the hetFmutant, this increase in hetR transcription was delayed, and a hetR promoter::green fluorescent protein (GFP) transcriptional reporter indicated that increased transcription of hetR occurred in all cells rather than only in developing heterocysts. When a fully functional HetR-GFP fusion protein was expressed in the hetF mutant from a multicopy plasmid, HetR-GFP accumulated nonspecifically in all cells under nitrogen-replete conditions; when expressed in the wild type, HetR-GFP was observed only in heterocysts after N step-down. HetF therefore appears to cooperate with HetR in a positive regulatory pathway and may be required for the increased transcription of hetR and localization of the HetR protein in differentiating heterocysts.

2017 ◽  
Vol 199 (9) ◽  
Author(s):  
Behzad Khayatan ◽  
Divleen K. Bains ◽  
Monica H. Cheng ◽  
Ye Won Cho ◽  
Jessica Huynh ◽  
...  

ABSTRACT Most species of filamentous cyanobacteria are capable of gliding motility, likely via a conserved type IV pilus-like system that may also secrete a motility-associated polysaccharide. In a subset of these organisms, motility is achieved only after the transient differentiation of hormogonia, which are specialized filaments that enter a nongrowth state dedicated to motility. Despite the fundamental importance of hormogonia to the life cycles of many filamentous cyanobacteria, the molecular regulation of hormogonium development is largely undefined. To systematically identify genes essential for hormogonium development and motility in the model heterocyst-forming filamentous cyanobacterium Nostoc punctiforme, a forward genetic screen was employed. The first gene identified using this screen, designated ogtA, encodes a putative O-linked β-N-acetylglucosamine transferase (OGT). The deletion of ogtA abolished motility, while ectopic expression of ogtA induced hormogonium development even under hormogonium-repressing conditions. Transcription of ogtA is rapidly upregulated (1 h) following hormogonium induction, and an OgtA-GFPuv fusion protein localized to the cytoplasm. In developing hormogonia, accumulation of PilA but not HmpD is dependent on ogtA. Reverse transcription-quantitative PCR (RT-qPCR) analysis indicated equivalent levels of pilA transcript in the wild-type and ΔogtA mutant strains, while a reporter construct consisting of the intergenic region in the 5′ direction of pilA fused to gfp produced lower levels of fluorescence in the ΔogtA mutant strain than in the wild type. The production of hormogonium polysaccharide in the ΔogtA mutant strain is reduced compared to that in the wild type but comparable to that in a pilA deletion strain. Collectively, these results imply that O-GlcNAc protein modification regulates the accumulation of PilA via a posttranscriptional mechanism in developing hormogonia. IMPORTANCE Filamentous cyanobacteria are among the most developmentally complex prokaryotes. Species such as Nostoc punctiforme develop an array of cell types, including nitrogen-fixing heterocysts, spore-like akinetes, and motile hormogonia, that function in dispersal as well as the establishment of nitrogen-fixing symbioses with plants and fungi. These symbioses are major contributors to global nitrogen fixation. Despite the fundamental importance of hormogonia to the life cycle of filamentous cyanobacteria and the establishment of symbioses, the molecular regulation of hormogonium development is largely undefined. We employed a genetic screen to identify genes essential for hormogonium development and motility in Nostoc punctiforme. The first gene identified using this screen encodes a eukaryotic-like O-linked β-N-acetylglucosamine transferase that is required for accumulation of PilA in hormogonia.


2009 ◽  
Vol 191 (21) ◽  
pp. 6473-6481 ◽  
Author(s):  
Xu-Ming Mao ◽  
Zhan Zhou ◽  
Xiao-Ping Hou ◽  
Wen-Jun Guan ◽  
Yong-Quan Li

ABSTRACT Here we reported that deletion of SigK (SCO6520), a sigma factor in Streptomyces coelicolor, caused an earlier switch from vegetative mycelia to aerial mycelia and higher expression of chpE and chpH than that in the wild type. Loss of SigK also resulted in accelerated and enhanced production of antibiotics, actinorhodin, and undecylprodigiosin and increased expression of actII-orf4 and redD. These results suggested that SigK had a negative role in morphological transition and secondary metabolism. Furthermore, the sigK promoter (sigKp) activity gradually increased and sigK expression was partially dependent on SigK, but this dependence decreased during the developmental course of substrate mycelia. Meanwhile, two potentially nonspecific cleavages occurred between SigK and green fluorescent protein, and the SigK fusion proteins expressed under the constitutive promoter ermEp* sharply decreased and disappeared when aerial mycelia emerged. If expressed under sigKp, 3FLAG-SigK showed similar dynamic patterns but did not decrease as sharply as SigK expressed under ermEp*. These data suggested that the climbing expression of sigK might reduce the prompt degradation of SigK during vegetative hypha development for the proper timing of morphogenesis and that SigK vanished to remove the block for the emergence of aerial mycelia. Thus, we proposed that SigK had inhibitory roles on developmental events and that these inhibitory effects may be released by SigK degradation.


2008 ◽  
Vol 455 (4-6) ◽  
pp. 303-306 ◽  
Author(s):  
Pavel Leiderman ◽  
Dan Huppert ◽  
S. James Remington ◽  
Laren M. Tolbert ◽  
Kyril M. Solntsev

2007 ◽  
Vol 73 (5) ◽  
pp. 1622-1629 ◽  
Author(s):  
Tomoko Igawa ◽  
Naoko Takahashi-Ando ◽  
Noriyuki Ochiai ◽  
Shuichi Ohsato ◽  
Tsutomu Shimizu ◽  
...  

ABSTRACT Maize is subject to ear rot caused by toxigenic Aspergillus and Fusarium species, resulting in contamination with aflatoxins, fumonisins, trichothecenes, and zearalenone (ZEN). The trichothecene group and ZEN mycotoxins are produced by the cereal pathogen Fusarium graminearum. A transgenic detoxification system for the elimination of ZEN was previously developed using an egfp::zhd101 gene (gfzhd101), encoding an enhanced green fluorescent protein fused to a ZEN-degrading enzyme. In this study, we produced a transgenic maize line expressing an intact copy of gfzhd101 and examined the feasibility of transgene-mediated detoxification in the kernels. ZEN-degrading activity has been detected in transgenic kernels during seed maturation (for a period of 6 weeks after pollination). The level of detoxification activity was unaltered after an additional storage period of 16 weeks at 6°C. When the seeds were artificially contaminated by immersion in a ZEN solution for 48 h at 28°C, the total amount of the mycotoxin in the transgenic seeds was uniformly reduced to less than 1/10 of that in the wild type. The ZEN in the transgenic maize kernels was also efficiently decontaminated under conditions of lower water activity (aw) and temperature; e.g., 16.9 μg of ZEN was removed per gram of seed within 48 h at an aw of 0.90 at 20°C. F. graminearum infection assays demonstrated an absence of ZEN in the transgenic maize seeds, while the mycotoxin accumulated in wild-type kernels under the same conditions. Transgene-mediated detoxification may offer simple solutions to the problems of mycotoxin contamination in maize.


Author(s):  
Anie Day D C Asa ◽  
Rujira Wanotayan ◽  
Mukesh Kumar Sharma ◽  
Kaima Tsukada ◽  
Mikio Shimada ◽  
...  

Abstract Non-homologous end joining is one of the main pathways for DNA double-strand break (DSB) repair and is also implicated in V(D)J recombination in immune system. Therefore, mutations in non-homologous end-joining (NHEJ) proteins were found to be associated with immunodeficiency in human as well as in model animals. Several human patients with mutations in XRCC4 were reported to exhibit microcephaly and growth defects, but unexpectedly showed normal immune function. Here, to evaluate the functionality of these disease-associated mutations of XRCC4 in terms of radiosensitivity, we generated stable transfectants expressing these mutants in XRCC4-deficient murine M10 cells and measured their radiosensitivity by colony formation assay. V83_S105del, R225X and D254Mfs*68 were expressed at a similar level to wild-type XRCC4, while W43R, R161Q and R275X were expressed at even higher level than wild-type XRCC4. The expression levels of DNA ligase IV in the transfectants with these mutants were comparable to that in the wild-type XRCC4 transfectant. The V83S_S105del transfectant and, to a lesser extent, D254Mfs*68 transfectant, showed substantially increased radiosensitivity compared to the wild-type XRCC4 transfectant. The W43R, R161Q, R225X and R275X transfectants showed a slight but statistically significant increase in radiosensitivity compared to the wild-type XRCC4 transfectant. When expressed as fusion proteins with Green fluorescent protein (GFP), R225X, R275X and D254Mfs*68 localized to the cytoplasm, whereas other mutants localized to the nucleus. These results collectively indicated that the defects of XRCC4 in patients might be mainly due to insufficiency in protein quantity and impaired functionality, underscoring the importance of XRCC4’s DSB repair function in normal development.


2017 ◽  
Vol 114 (8) ◽  
pp. E1405-E1412 ◽  
Author(s):  
Zhenggao Zheng ◽  
Amin Omairi-Nasser ◽  
Xiying Li ◽  
Chunxia Dong ◽  
Yan Lin ◽  
...  

Channels that cross cell walls and connect the cytoplasm of neighboring cells in multicellular cyanobacteria are pivotal for intercellular communication. We find that the product of the geneall1140of the filamentous cyanobacteriumAnabaenasp. PCC 7120 is required for proper channel formation.All1140encodes an amidase that hydrolyses purified peptidoglycans. An All1140-GFP fusion protein is located at the Z-ring in the periplasmic space during most of the cell cycle. Anall1140-null mutant (M40) was unable to grow diazotrophically, and no mature heterocysts were observed in the absence of combined nitrogen. Expression of two key genes,hetRandpatS, was studied in M40 using GFP as a reporter. Upon nitrogen step-down, the patterned distribution of green fluorescent cells in filaments seen in the wild type were not observed in mutant M40. Intercellular communication in M40 was studied by measuring fluorescence recovery after photobleaching (FRAP). Movement of calcein (622 Da) was aborted in M40, suggesting that the channels connecting the cytoplasm of neighboring cells are impaired in the mutant. The channels were examined with electron tomography; their diameters were nearly identical, 12.7 nm for the wild type and 12.4 nm for M40, suggesting that AmiC3 is not required for channel formation. However, when the cell wall sacculi isolated by boiling were examined by EM, the average sizes of the channels of the wild type and M40 were 20 nm and 12 nm, respectively, suggesting that the channel walls of the wild type are expandable and that this expandability requires AmiC3.


2006 ◽  
Vol 72 (7) ◽  
pp. 5052-5060 ◽  
Author(s):  
Laura Mateos ◽  
Alberto Jiménez ◽  
José L. Revuelta ◽  
María A. Santos

ABSTRACT Ashbya gossypii is a natural riboflavin overproducer used in the industrial production of the vitamin. We have isolated an insertional mutant exhibiting higher levels of riboflavin production than the wild type. DNA analysis of the targeted locus in the mutant strain revealed that a syntenic homolog of the Saccharomyces cerevisiae BAS1 gene, a member of the Myb family of transcription factors, was inactivated. Directed gene disruption of AgBAS1 confirmed the phenotype observed for the insertional mutant, and the Δbas1 mutant also showed auxotrophy for adenine and several growth defects, such as a delay in the germination of the spores and an abnormally prolonged trophic phase. Additionally, we demonstrate that the DNA-binding domain of AgBas1p is able to bind to the Bas1-binding motifs in the AgADE4 promoter; we also show a clear nuclear localization of a green fluorescent protein-Bas1 fusion protein. Real-time quantitative PCR analyses comparing the wild type and the Δbas1 mutant revealed that AgBAS1 was responsible for the adenine-mediated regulation of the purine and glycine pathways, since the transcription of the ADE4 and SHM2 genes was virtually abolished in the Δbas1 mutant. Furthermore, the transcription of ADE4 and SHM2 in the Δbas1 mutant did not diminish during the transition from the trophic to the productive phase did not diminish, in contrast to what occurred in the wild-type strain. A C-terminal deletion in the AgBAS1 gene, comprising a hypothetical regulatory domain, caused constitutive activation of the purine and glycine pathways, enhanced riboflavin overproduction, and prolonged the trophic phase. Taking these results together, we propose that in A. gossypii, AgBAS1 is an important transcription factor that is involved in the regulation of different physiological processes, such as purine and glycine biosynthesis, riboflavin overproduction, and growth.


2005 ◽  
Vol 25 (12) ◽  
pp. 4977-4992 ◽  
Author(s):  
Hao G. Nguyen ◽  
Dharmaraj Chinnappan ◽  
Takeshi Urano ◽  
Katya Ravid

ABSTRACT The kinase Aurora-B, a regulator of chromosome segregation and cytokinesis, is highly expressed in a variety of tumors. During the cell cycle, the level of this protein is tightly controlled, and its deregulated abundance is suspected to contribute to aneuploidy. Here, we provide evidence that Aurora-B is a short-lived protein degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. Aurora-B interacts with the APC/c through the Cdc27 subunit, Aurora-B is ubiquitinated, and its level is increased upon treatment with inhibitors of the proteasome. Aurora-B binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, the overexpression of which accelerates Aurora-B degradation. Using deletions or point mutations of the five putative degradation signals in Aurora-B, we show that degradation of this protein does not depend on its D-boxes (RXXL), but it does require intact KEN boxes and A-boxes (QRVL) located within the first 65 amino acids. Cells transfected with wild-type or A-box-mutated or KEN box-mutated Aurora-B fused to green fluorescent protein display the protein localized to the chromosomes and then to the midzone during mitosis, but the mutated forms are detected at greater intensities. Hence, we identified the degradation pathway for Aurora-B as well as critical regions for its clearance. Intriguingly, overexpression of a stable form of Aurora-B alone induces aneuploidy and anchorage-independent growth.


2006 ◽  
Vol 17 (2) ◽  
pp. 799-813 ◽  
Author(s):  
Keylon L. Cheeseman ◽  
Takehiko Ueyama ◽  
Tanya M. Michaud ◽  
Kaori Kashiwagi ◽  
Demin Wang ◽  
...  

Protein kinase C-ϵ (PKC-ϵ) translocates to phagosomes and promotes uptake of IgG-opsonized targets. To identify the regions responsible for this concentration, green fluorescent protein (GFP)-protein kinase C-ϵ mutants were tracked during phagocytosis and in response to exogenous lipids. Deletion of the diacylglycerol (DAG)-binding ϵC1 and ϵC1B domains, or the ϵC1B point mutant ϵC259G, decreased accumulation at phagosomes and membrane translocation in response to exogenous DAG. Quantitation of GFP revealed that ϵC259G, ϵC1, and ϵC1B accumulation at phagosomes was significantly less than that of intact PKC-ϵ. Also, the DAG antagonist 1-hexadecyl-2-acetyl glycerol (EI-150) blocked PKC-ϵ translocation. Thus, DAG binding to ϵC1B is necessary for PKC-ϵ translocation. The role of phospholipase D (PLD), phosphatidylinositol-specific phospholipase C (PI-PLC)-γ1, and PI-PLC-γ2 in PKC-ϵ accumulation was assessed. Although GFP-PLD2 localized to phagosomes and enhanced phagocytosis, PLD inhibition did not alter target ingestion or PKC-ϵ localization. In contrast, the PI-PLC inhibitor U73122 decreased both phagocytosis and PKC-ϵ accumulation. Although expression of PI-PLC-γ2 is higher than that of PI-PLC-γ1, PI-PLC-γ1 but not PI-PLC-γ2 consistently concentrated at phagosomes. Macrophages from PI-PLC-γ2-/-mice were similar to wild-type macrophages in their rate and extent of phagocytosis, their accumulation of PKC-ϵ at the phagosome, and their sensitivity to U73122. This implicates PI-PLC-γ1 as the enzyme that supports PKC-ϵ localization and phagocytosis. That PI-PLC-γ1 was transiently tyrosine phosphorylated in nascent phagosomes is consistent with this conclusion. Together, these results support a model in which PI-PLC-γ1 provides DAG that binds to ϵC1B, facilitating PKC-ϵ localization to phagosomes for efficient IgG-mediated phagocytosis.


Sign in / Sign up

Export Citation Format

Share Document