scholarly journals Natural Transformation of Campylobacter jejuni Requires Components of a Type II Secretion System

2003 ◽  
Vol 185 (21) ◽  
pp. 6493-6493
Author(s):  
Rebecca S. Wiesner ◽  
David R. Hendrixson ◽  
Victor J. DiRita
2007 ◽  
Vol 189 (14) ◽  
pp. 5022-5033 ◽  
Author(s):  
Xiaoyan Han ◽  
Ruth M. Kennan ◽  
Dane Parker ◽  
John K. Davies ◽  
Julian I. Rood

ABSTRACT The objective of this study was to develop an understanding of the molecular mechanisms by which type IV fimbrial biogenesis, natural transformation, and protease secretion are linked in the ovine foot rot pathogen, Dichelobacter nodosus. We have shown that like the D. nodosus fimbrial subunit FimA, the pilin-like protein PilE and the FimN, FimO, and FimP proteins, which are homologs of PilB, PilC, and PilD from Pseudomonas aeruginosa, are essential for fimbrial biogenesis and natural transformation, indicating that transformation requires an intact type IV fimbrial apparatus. The results also showed that extracellular protease secretion in the fimN, fimO, fimP, and pilE mutants was significantly reduced, which represents the first time that PilB, PilC, and PilE homologs have been shown to be required for the secretion of unrelated extracellular proteins in a type IV fimbriate bacterium. Quantitative real-time PCR analysis of the three extracellular protease genes aprV2, aprV5, and bprV showed that the effects on protease secretion were not mediated at the transcriptional level. Bioinformatic analysis did not identify a classical type II secretion system, and the putative fimbrial biogenesis gene pilQ was the only outer membrane secretin gene identified. Based on these results, it is postulated that in D. nodosus, protease secretion occurs by a type II secretion-related process that directly involves components of the type IV fimbrial biogenesis machinery, which represents the only type II secretion system encoded by the small genome of this highly evolved pathogen.


2003 ◽  
Vol 185 (18) ◽  
pp. 5408-5418 ◽  
Author(s):  
Rebecca S. Wiesner ◽  
David R. Hendrixson ◽  
Victor J. DiRita

ABSTRACT The human pathogen Campylobacter jejuni is one of more than 40 naturally competent bacterial species able to import macromolecular DNA from the environment and incorporate it into their genomes. However, in C. jejuni little is known about the genes involved in this process. We used random transposon mutagenesis to identify genes that are required for the transformation of this organism. We isolated mutants with insertions in 11 different genes; most of the mutants are affected in the DNA uptake stage of transformation, whereas two mutants are affected in steps subsequent to DNA uptake, such as recombination into the chromosome or in DNA transport across the inner membrane. Several of these genes encode proteins homologous to those involved in type II secretion systems, biogenesis of type IV pili, and competence for natural transformation in gram-positive and gram-negative species. Other genes identified in our screen encode proteins unique to C. jejuni or are homologous to proteins that have not been shown to play a role in the transformation in other bacteria.


2012 ◽  
Vol 287 (12) ◽  
pp. 9072-9080 ◽  
Author(s):  
Shuang Gu ◽  
Geoff Kelly ◽  
Xiaohui Wang ◽  
Tom Frenkiel ◽  
Vladimir E. Shevchik ◽  
...  

2020 ◽  
Author(s):  
Jake D. Callaghan ◽  
Nicholas A. Stella ◽  
Kara M. Lehner ◽  
Benjamin R. Treat ◽  
Kimberly M. Brothers ◽  
...  

ABSTRACTTunable control of gene expression is an invaluable tool for biological experiments. In this study, we describe a new xylose-inducible promoter system and evaluate it in both Pseudomonas aeruginosa and P. fluorescens. The Pxut promoter derived from the P. flurorescens xut operon was incorporated into a broad host-range pBBR1-based plasmid and compared to the Escherichia coli-derived PBAD promoter using gfp as a reporter. GFP-fluorescence from the Pxut promoter was inducible in both Pseudomonas species, but not in E. coli, which may facilitate cloning of toxic genes using E. coli to generate plasmids. The Pxut promoter was expressed at a lower inducer concentration than PBAD in P. fluorescens and higher gfp levels were achieved using Pxut. Flow cytometry analysis indicated that Pxut was more leaky than PBAD in the tested Pseudomonas species, but was expressed in a higher proportion of cells when induced. D-xylose did not support growth of P. aeruginosa or P. fluorescens as a sole carbon source and is less expensive than many other commonly used inducers which could facilitate large scale applications. The efficacy of this system aided in demonstrating a role for the P. aeruginosa type II secretion system gene from xcpQ in bacterial inhibition of corneal epithelial cell wound closure. This study introduces a new inducible promoter system for gene expression for use in Pseudomonas species.ImportancePseudomonas species are enormously important in human infections, biotechnology, and as a model system for interrogating basic science questions. In this study we have developed a xylose-inducible promoter system and evaluated it in P. aeruginosa and P. fluorescens and found it to be suitable for the strong induction of gene expression. Furthermore, we have demonstrated its efficacy in controlled gene expression to show that a type 2 secretion system protein from P. aeruginosa, XcpQ, is important for host-pathogen interactions in a corneal wound closure model.


2011 ◽  
Vol 7 (9) ◽  
pp. e1002228 ◽  
Author(s):  
Konstantin V. Korotkov ◽  
Tanya L. Johnson ◽  
Michael G. Jobling ◽  
Jonathan Pruneda ◽  
Els Pardon ◽  
...  

2008 ◽  
Vol 190 (15) ◽  
pp. 5512-5516 ◽  
Author(s):  
Liang Shi ◽  
Shuang Deng ◽  
Matthew J. Marshall ◽  
Zheming Wang ◽  
David W. Kennedy ◽  
...  

ABSTRACT MtrC and OmcA are cell surface-exposed lipoproteins important for reducing solid metal oxides. Deletions of type II secretion system (T2SS) genes reduced their extracellular release and their accessibility to the proteinase K treatment, demonstrating the direct involvement of T2SS in translocation of MtrC and OmcA to the bacterial cell surface.


Sign in / Sign up

Export Citation Format

Share Document