scholarly journals Matrix-Assisted Laser Desorption Ionization–Time of Flight and Comparative Genomic Analysis of M-18 Group A Streptococcus Strains Associated with an Acute Rheumatic Fever Outbreak in Northeast Italy in 2012 and 2013

2015 ◽  
Vol 53 (5) ◽  
pp. 1562-1572 ◽  
Author(s):  
Paolo Gaibani ◽  
Erika Scaltriti ◽  
Claudio Foschi ◽  
Enrico Baggio ◽  
Maria Vittoria Tamburini ◽  
...  
2020 ◽  
Vol 9 (1) ◽  
pp. 82
Author(s):  
Issa Sy ◽  
Lena Margardt ◽  
Emmanuel O. Ngbede ◽  
Mohammed I. Adah ◽  
Saheed T. Yusuf ◽  
...  

Fascioliasis is a neglected trematode infection caused by Fasciola gigantica and Fasciola hepatica. Routine diagnosis of fascioliasis relies on macroscopic identification of adult worms in liver tissue of slaughtered animals, and microscopic detection of eggs in fecal samples of animals and humans. However, the diagnostic accuracy of morphological techniques and stool microscopy is low. Molecular diagnostics (e.g., polymerase chain reaction (PCR)) are more reliable, but these techniques are not routinely available in clinical microbiology laboratories. Matrix-assisted laser/desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a widely-used technique for identification of bacteria and fungi; yet, standardized protocols and databases for parasite detection need to be developed. The purpose of this study was to develop and validate an in-house database for Fasciola species-specific identification. To achieve this goal, the posterior parts of seven adult F. gigantica and one adult F. hepatica were processed and subjected to MALDI-TOF MS to create main spectra profiles (MSPs). Repeatability and reproducibility tests were performed to develop the database. A principal component analysis revealed significant differences between the spectra of F. gigantica and F. hepatica. Subsequently, 78 Fasciola samples were analyzed by MALDI-TOF MS using the previously developed database, out of which 98.7% (n = 74) and 100% (n = 3) were correctly identified as F. gigantica and F. hepatica, respectively. Log score values ranged between 1.73 and 2.23, thus indicating a reliable identification. We conclude that MALDI-TOF MS can provide species-specific identification of medically relevant liver flukes.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4457
Author(s):  
Chieh-Hsin Lin ◽  
Hung Su ◽  
Chung-Chieh Hung ◽  
Hsien-Yuan Lane ◽  
Jentaie Shiea

Matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry is a sensitive analytical tool for characterizing various biomolecules in biofluids. In this study, MALDI-TOF was used to characterize potential plasma biomarkers for distinguishing patients with major depressive disorder (MDD) from patients with schizophrenia and healthy controls. To avoid interference from albumin—the predominant protein in plasma—the plasma samples were pretreated using acid hydrolysis. The results obtained by MALDI-TOF were also validated by electrospray ionization-quadrupole time-of-flight (ESI-QTOF) mass spectrometry. The analytical results were further treated with principal component analysis (PCA), hierarchical clustering analysis (HCA), and receiver operating characteristic (ROC) curve analysis. The statistical analyses showed that MDD patients could be distinguished from schizophrenia patients and healthy controls by the lack of apolipoprotein C1 (Apo C1), which, in fact, was detected in healthy controls and schizophrenia patients. This protein is suggested to be a potential plasma biomarker for distinguishing MDD patients from healthy controls and schizophrenia patients. Since sample preparation for MALDI-TOF is very simple, high-throughput plasma apolipoprotein analysis for clinical purposes is feasible.


Sign in / Sign up

Export Citation Format

Share Document