Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards proposed standard methods.

1994 ◽  
Vol 32 (7) ◽  
pp. 1650-1653 ◽  
Author(s):  
M A Pfaller ◽  
M Bale ◽  
B Buschelman ◽  
M Lancaster ◽  
A Espinel-Ingroff ◽  
...  
2006 ◽  
Vol 50 (4) ◽  
pp. 1287-1292 ◽  
Author(s):  
Benjamin J. Park ◽  
Beth A. Arthington-Skaggs ◽  
Rana A. Hajjeh ◽  
Naureen Iqbal ◽  
Meral A. Ciblak ◽  
...  

ABSTRACT One hundred seven Candida bloodstream isolates (51 C. albicans, 24 C. glabrata, 13 C. parapsilosis, 13 C. tropicalis, 2 C. dubliniensis, 2 C. krusei, and 2 C. lusitaniae strains) from patients treated with amphotericin B alone underwent in vitro susceptibility testing against amphotericin B using five different methods. Fifty-four isolates were from patients who failed treatment, defined as death 7 to 14 days after the incident candidemia episode, having persistent fever of ≥5 days' duration after the date of the incident candidemia, or the recurrence of fever after two consecutive afebrile days while on antifungal treatment. MICs were determined by using the Clinical Laboratory Standards Institute (formally National Committee for Clinical Laboratory Standards) broth microdilution procedure with two media and by using Etest. Minimum fungicidal concentrations (MFCs) were also measured in two media. Broth microdilution tests with RPMI 1640 medium generated a restricted range of MICs (0.125 to 1 μg/ml); the corresponding MFC values ranged from 0.5 to 4 μg/ml. Broth microdilution tests with antibiotic medium 3 produced a broader distribution of MIC and MFC results (0.015 to 0.25 μg/ml and 0.06 to 2 μg/ml, respectively). Etest produced the widest distribution of MICs (0.094 to 2 μg/ml). However, none of the test formats studied generated results that significantly correlated with therapeutic success or failure.


2000 ◽  
Vol 38 (9) ◽  
pp. 3359-3361 ◽  
Author(s):  
M. A. Pfaller ◽  
S. A. Messer ◽  
K. Mills ◽  
A. Bolmström

The performance of the Etest for itraconazole susceptibility testing of 50 isolates of filamentous fungi was assessed in comparison with the National Committee for Clinical Laboratory Standards (NCCLS) proposed standard microdilution broth method. The NCCLS method employed RPMI 1640 broth medium, and MICs were read after incubation for 48 h at 35°C. Etest MICs were determined with RPMI agar containing 2% glucose and with Casitone agar and were read after incubation for 24 h (Aspergillus spp. and Rhizopus spp.) and 48 h (all species except Rhizopus spp.) at 35°C. The isolates included Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Fusarium spp., Pseudallescheria boydii, Rhizopus spp., Paecilomyces variotii, and an Acremonium sp. Overall agreement between Etest and microdilution MICs was 96% with RPMI agar and 80% with Casitone agar. The agreement was 100% for all species exceptRhizopus spp. (83%) and Paecilomyces varioti(0%) with RPMI agar. When Casitone agar was used, the agreement ranged from 50% with Rhizopus spp. to 100% withFusarium spp., P. boydii, P. varioti, and an Acremonium sp. Notably, forAspergillus spp., the agreement between itraconazole Etest MICs read at 24 h and reference microdilution MICs read at 48 h was 100% with both RPMI and Casitone agar. Both media supported the growth of all filamentous fungi tested. Where a discrepancy was observed between Etest and the reference method, the Etest MIC was generally higher. The Etest method using RPMI agar appears to be a useful method for determining itraconazole susceptibilities ofAspergillus spp. and other filamentous fungi.


1999 ◽  
Vol 123 (4) ◽  
pp. 285-289 ◽  
Author(s):  
Gary V. Doern ◽  
Angela B. Brueggemann ◽  
Michael A. Pfaller ◽  
Ronald N. Jones

Abstract Objective.—To assess the performance of clinical microbiology laboratories in the United States when conducting in vitro susceptibility tests with Streptococcus pneumoniae. Methods.—The results of a nationwide College of American Pathologists Proficiency Survey test sample, in which susceptibility testing of an isolate of S pneumoniae was performed, were assessed with respect to precision and accuracy. Results.—Wide variability was noted among participating laboratories with both minimum inhibitory concentration procedures and disk diffusion susceptibility tests when both methods were applied to S pneumoniae. Despite this high degree of variation, categorical interpretive errors were uncommon. Numerous laboratories reported results for antimicrobial agents that are not recommended by the National Committee for Clinical Laboratory Standards for tests with S pneumoniae. Conclusions.—Current susceptibility testing practices with S pneumoniae in the United States indicate limited precision and a tendency for laboratories to test and report results obtained with antimicrobial agents of questionable therapeutic value against this organism. Continued efforts to standardize susceptibility testing of S pneumoniae in the United States are warranted. In addition, modifications of existing interpretive criteria may be necessary.


2003 ◽  
Vol 47 (2) ◽  
pp. 636-642 ◽  
Author(s):  
R. J. Suchland ◽  
W. M. Geisler ◽  
Walter E. Stamm

ABSTRACT In vitro susceptibility testing was performed on strains of Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci under various conditions, including the cell line utilized, the time between infection and the addition of an antimicrobial, the concentration of inoculum, and the effect of multiple passage on the minimal chlamydicidal concentrations for the antibiotics doxycycline, azithromycin, erythromycin, ofloxacin, and tetracycline. With macrolides, the MIC varied depending upon the cell line utilized. With all antimicrobials, the MIC was related to the time at which the antimicrobial was added after infection. By an optimized cell culture passage method, all strains of chlamydia tested demonstrated survival after exposure to high levels (>100 times the MIC) of antimicrobials. Furthermore, upon retest, these surviving organisms did not demonstrate increased MICs. Thus, this phenomenon does not reflect selection of antimicrobial-resistant mutants but rather survival of some organisms in high antimicrobial concentrations (heterotypic survival). An additional 44 clinical isolates of C. trachomatis from patients with single-incident infections were tested against those from patients with recurrent or persistent infections, and heterotypic survival was seen in all isolates tested; hence, in vitro resistance did not correlate with the patient's apparent clinical outcome.


2001 ◽  
Vol 45 (6) ◽  
pp. 1854-1859 ◽  
Author(s):  
Gloria M. González ◽  
Rolando Tijerina ◽  
Laura K. Najvar ◽  
Rosie Bocanegra ◽  
Michael Luther ◽  
...  

ABSTRACT Caspofungin (Merck Pharmaceuticals) was tested in vitro against 25 clinical isolates of Coccidoides immitis. In vitro susceptibility testing was performed in accordance with the National Committee for Clinical Laboratory Standards document M38-P guidelines. Two C. immitis isolates for which the caspofungin MICs were different were selected for determination of the minimum effective concentration (MEC), and these same strains were used for animal studies. Survival and tissue burdens of the spleens, livers, and lungs were used as antifungal response markers. Mice infected with strain 98-449 (48-h MIC, 8 μg/ml; 48-h MEC, 0.125 μg/ml) showed 100% survival to day 50 when treated with caspofungin at ≥1 mg/kg. Mice infected with strain 98-571 (48-h MIC, 64 μg/ml; 48-h MEC, 0.125 μg/ml) displayed ≥80% survival when the treatment was caspofungin at ≥5 mg/kg. Treatment with caspofungin at 0.5, 1, 5, or 10 mg/kg was effective in reducing the tissue fungal burdens of mice infected with either isolate. When tissue fungal burden study results were compared between strains, caspofungin showed no statistically significant difference in efficacy in the organs of the mice treated with both strains. A better in vitro-in vivo correlation was noted when we used the MEC instead of the MIC as the endpoint for antifungal susceptibility testing. Caspofungin may have a role in the treatment of coccidioidomycosis.


2005 ◽  
Vol 49 (1) ◽  
pp. 82-87 ◽  
Author(s):  
Ruben Avendaño-Herrera ◽  
Rute Irgang ◽  
Soledad Núñez ◽  
Jesús L. Romalde ◽  
Alicia E. Toranzo

ABSTRACT In the present study, Anacker and Ordal agar, marine agar (MA), and Flexibacter maritimus medium (FMM) were compared with the dilute versions of Mueller-Hinton agar (DMHA) medium recommended by the National Committee for Clinical Laboratory Standards (NCCLS) for their use in disk diffusion tests with Tenacibaculum maritimum strains and to calculate the MICs of five drugs by the Etest method. Preliminary growth tests performed with 32 strains of this pathogen on each medium revealed that all strains failed to grow on DMHA, while the remaining media supported good growth of all isolates. In the susceptibility tests, which were carried out with the other three media, all strains were resistant to oxolinic acid and were highly susceptible to amoxicillin and trimethoprim-sulfamethoxazole, showing a good correspondence with the Etest values, which ranged from 0.064 to 0.75 and 0.006 to 1.5 μg/ml, respectively. Enrofloxacin and oxytetracycline produced significantly smaller inhibition zones and MICs on MA than on the other media assayed. However, fast, clear, and well-defined zones of inhibition were displayed for all strains at 24 h of incubation only on FMM by both the disk diffusion assay and Etest. In addition, FMM prepared with commercial sea salts instead of seawater was also suitable for bacterial isolation as well as for susceptibility testing. On the basis of these results, the use of FMM to determine the in vitro susceptibility of T. maritimum and its inclusion in a future revision of the NCCLS M42 report are recommended.


Sign in / Sign up

Export Citation Format

Share Document