scholarly journals ZAP, a CCCH-Type Zinc Finger Protein, Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication and Interacts with Viral Nsp9

2019 ◽  
Vol 93 (10) ◽  
Author(s):  
Yongxiang Zhao ◽  
Zhongbao Song ◽  
Juan Bai ◽  
Xuewei Liu ◽  
Hans Nauwynck ◽  
...  

ABSTRACTPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens affecting many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. PRRSV infection can cleave mitochondrial antiviral signaling protein (MAVS) and inhibit the induction of type I interferon. The antiviral effector molecules that are involved in host protective responses to PRRSV infection are not fully understood. Here, by using transcriptome sequencing, we found that a zinc finger antiviral protein, ZAP, is upregulated in MAVS-transfected Marc-145 cells and that ZAP suppresses PRRSV infection at the early stage of replication. We also found that the viral protein Nsp9, an RNA-dependent RNA polymerase (RdRp), interacts with ZAP. The interacting locations were mapped to the zinc finger domain of ZAP and N-terminal amino acids 150 to 160 of Nsp9. These findings suggest that ZAP is an effective antiviral factor for suppressing PRRSV infection, and they shed light on virus-host interaction.IMPORTANCEPRRSV continues to adversely impact the global swine industry. It is important to understand the various antiviral factors against PRRSV infection. Here, a zinc finger protein, termed ZAP, was screened from MAVS-induced antiviral genes by transcriptome sequencing, and it was found to remarkably suppress PRRSV replication and interact with PRRSV Nsp9. The zinc finger domain of ZAP and amino acids 150 to 160 of Nsp9 are responsible for the interaction. These findings expand the antiviral spectrum of ZAP and provide a better understanding of ZAP antiviral mechanisms, as well as virus-host interactions.

2018 ◽  
Vol 93 (3) ◽  
Author(s):  
Kwangchol Mun ◽  
Tanel Punga

ABSTRACTHuman adenovirus (HAdV) encodes a multifunctional DNA-binding protein pVII, which is involved in virus DNA packaging and extracellular immune signaling regulation. Although the pVII is an essential viral protein, its exact role in the virus life cycle and interplay with cellular proteins have remained to a large extent unclear. We have recently identified the cellular zinc finger protein 622 (ZNF622) as a potential pVII-interacting protein. In this study, we describe the functional consequences of the ZNF622-pVII interplay and the role of ZNF622 in the HAdV life cycle. ZNF622 protein expression increased, and it accumulated similarly to the pVII protein in the nuclei of virus-infected cells. The lack of the ZNF622 protein specifically increased pVII binding to viral DNA in the infected cells and elevated the pVII protein levels in the purified virions. In addition, ZNF622 knockout cells showed an increased cell lysis and enhanced accumulation of the infectious virus particles. Protein interaction studies revealed that ZNF622 forms a trimeric complex with the pVII protein and the cellular histone chaperon protein nucleophosmin 1 (NPM1). The integrity of this complex is important since ZNF622 mutations and NPM1 deficiency changed pVII ability to bind viral DNA. Collectively, our results implicate that ZNF622 may act as a cellular antiviral protein hindering lytic HAdV growth and limiting pVII protein binding to viral DNA.IMPORTANCEHuman adenoviruses (HAdVs) are common human pathogens causing a wide range of acute infections. To counteract viral pathogenicity, cells encode a variety of antiviral proteins and noncoding RNAs to block virus growth. In this study, we show that the cellular zinc finger protein 622 (ZNF622) interacts with an essential HAdV protein known as pVII. This mutual interaction limits pVII binding to viral DNA. Further, ZNF622 has a role in HAdV life cycle since the lack of ZNF622 correlates with increased lysis of the infected cells and accumulation of the infectious virions. Together, our study reveals a novel cellular antiviral protein ZNF622, which may impede lytic HAdV growth.


Open Biology ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 160065 ◽  
Author(s):  
Xiaoming Hu ◽  
Yuanfei Zhou ◽  
Yang Yang ◽  
Jie Peng ◽  
Tongxing Song ◽  
...  

Adipose tissue is a key determinant of whole-body metabolism and energy homeostasis. Unravelling the transcriptional regulatory process during adipogenesis is therefore highly relevant from a biomedical perspective. In these studies, zinc finger protein B-cell lymphoma 6 (Bcl6) was demonstrated to have a role in early adipogenesis of mesenchymal stem cells. Bcl6 is enriched in preadipose versus non-preadipose fibroblasts and shows upregulated expression in the early stage of adipogenesis. Gain- and loss-of-function studies revealed that Bcl6 acts as a key regulator of adipose commitment and differentiation both in vitro and ex vivo . RNAi-mediated knockdown of Bcl6 in C3H10T1/2 cells greatly inhibited adipogenic potential, whereas Bcl6 overexpression enhanced adipogenic differentiation. This transcription factor also directly or indirectly targets and controls the expression of some early and late adipogenic regulators (i.e. Zfp423, Zfp467, KLF15, C/EBPδ, C/EBPα and PPARγ). We further identified that Bcl6 transactivated the signal transducers and activators of transcription 1 ( STAT1 ), which was determined as a required factor for adipogenesis. Moreover, overexpression of STAT1 rescued the impairment of adipogenic commitment and differentiation induced by Bcl6 knockdown in C3H10T1/2 cells, thereby confirming that STAT1 is a downstream direct target of Bcl6. This study identifies Bcl6 as a positive transcriptional regulator of early adipose commitment.


10.1038/71717 ◽  
2000 ◽  
Vol 24 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Parastoo Momeni ◽  
Gernot Glöckner ◽  
Olaf Schmidt ◽  
Diane von Holtum ◽  
Beate Albrecht ◽  
...  

1998 ◽  
Vol 865 (1 VIP, PACAP, A) ◽  
pp. 49-58 ◽  
Author(s):  
ANKE HOFFMANN ◽  
ELISABETTA CIANI ◽  
SOUHEIR HOUSSAMI ◽  
PHILIPPE BRABET ◽  
LAURENT JOURNOT ◽  
...  

2007 ◽  
Vol 85 (3) ◽  
pp. 358-365 ◽  
Author(s):  
Annalisa Onori ◽  
Agata Desantis ◽  
Serena Buontempo ◽  
Maria Grazia Di Certo ◽  
Maurizio Fanciulli ◽  
...  

Our aim is to upregulate the expression of the dystrophin-related gene utrophin in Duchenne muscular dystrophy, in this way complementing the lack of dystrophin function. To achieve utrophin upregulation, we designed and engineered synthetic zinc-inger based transcription factors. We have previously shown that the artificial 3-zinc-finger protein Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from utrophin promoter A. Here we report a novel artificial 4-zinc-finger protein, Bagly, which binds with optimized affinity–specificity to a 12 bp DNA target sequence that is internal to human utrophin promoter A. Bagly was generated adding to Jazz protein an extra-fourth zinc finger, derived from transcription factor YY1. Importantly, the Bagly DNA target sequence is statistically present in the human genome only 210 times, about 60 fewer times than the 9 bp Jazz DNA target sequence. Thanks to its additional zinc-finger domain, Bagly protein shows enhanced transcriptional activity. Moreover, we demonstrated Bagly's effective access and binding to active chromatin in the chromosomal context and its ability to upregulate endogenous utrophin.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1621-1630 ◽  
Author(s):  
D. Bornemann ◽  
E. Miller ◽  
J. Simon

The Sex comb on midleg (Scm) gene is a member of the Polycomb group (PcG) of genes in Drosophila melanogaster. The PcG genes encode transcriptional repressors required for proper spatial expression of homeotic genes. We report the isolation of new Scm mutations and the molecular characterization of the Scm gene. Scm mRNA is expressed maternally, at peak levels in early embryos and then at lower levels throughout the remainder of development. Scm encodes a putative zinc finger protein of 877 amino acids. Scm protein is similar to polyhomeotic, another member of the PcG, both in the zinc finger region and in a separate C-terminal domain of 60 amino acids, which we term the SPM domain. Sequence analysis of an Scm mutant allele suggests a functional requirement for the SPM domain. Scm protein also bears homology in multiple domains to a mouse protein, Rae-28 (Nomura, M., Takihara, Y. and Shimada, K. (1994) Differentiation 57,39-50) and to a fly tumor suppressor protein, the product of the lethal(3)malignant brain tumor gene (Wismar, J. et al., (1995) Mech. Dev. 53, 141–154). Possible functional relationships among these proteins and potential biochemical roles for Scm protein in PcG repression are discussed.


2009 ◽  
Vol 22 (4) ◽  
pp. 402-410 ◽  
Author(s):  
Zhuangzhi Zhou ◽  
Guihua Li ◽  
Chunhua Lin ◽  
Chaozu He

Over recent decades, many pathogenicity genes of Magnaporthe oryzae have been identified but only a very limited number of genes have been identified that encode components of the conidiogenesis pathway. We report here a T-DNA insertional mutant that completely lost conidiation ability. Further investigation revealed that this mutant did not develop any conidiophore, and that the T-DNA was integrated into an annotated gene designated as conidiophore stalk-less1 or COS1. Complementation experiments suggested that COS1 may be a determinant of conidiation. Sequence analysis revealed that COS1 putatively encodes a 491-amino-acid zinc-finger protein and the protein was revealed localized to nucleus. Reverse-transcriptase polymerase chain reaction (RT-PCR)-based expression analysis indicated that two homologues of conidiophore-related genes were affected by the cos1 mutation, suggesting that Cos1 may function as a transcriptional regulator controlling genes responsible for conidiation. Inoculations of rice roots and wounded leaves with mycelia suggested that COS1 is not required for pathogenicity. Moreover, mutation of COS1 may aggravate infection of wounded leaves. Interestingly, different from the wild-type strain, mycelia of the cos1 mutant successfully infected host cells and caused visible symptoms on unwounded leaf blades and sheaths, indicating that Cos1 may have a role in some unknown mechanism of mycelial infection of M. oryzae.


Sign in / Sign up

Export Citation Format

Share Document