scholarly journals Activation of the B Cell Antigen Receptor Triggers Reactivation of Latent Kaposi's Sarcoma-Associated Herpesvirus in B Cells

2013 ◽  
Vol 87 (14) ◽  
pp. 8004-8016 ◽  
Author(s):  
S. Kati ◽  
E. H. Tsao ◽  
T. Gunther ◽  
M. Weidner-Glunde ◽  
T. Rothamel ◽  
...  
2000 ◽  
Vol 192 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Bok-Soo Lee ◽  
Xavier Alvarez ◽  
Satoshi Ishido ◽  
Andrew A. Lackner ◽  
Jae U. Jung

The B cell antigen receptor (BCR) is a large complex that consists of a disulfide-linked tetramer of two transmembrane heavy (μ) chains and two light (λ or κ) chains in association with a heterodimer of Igα and Igβ. Kaposi's sarcoma–associated herpesvirus (KSHV) encodes a transforming protein called K1, which has structural and functional similarity to Igα and Igβ. We demonstrate that K1 downregulates the expression of BCR complexes on the surface. The NH2-terminal region of K1 specifically interacts with the μ chains of BCR complexes, and this interaction retains BCR complexes in the endoplasmic reticulum, preventing their intracellular transport to the cell surface. Thus, KSHV K1 resembles Igα and Igβ in its ability to induce signaling and to interact with μ chains of the BCR. However, unlike Igα and Igβ, which interact with μ chains to direct BCR complexes to the cell surface, K1 interacts with μ chains to block the intracellular transport of BCR complexes to the cell surface. These results demonstrate a unique feature of the K1 transforming protein, which may confer virus-infected cells with a long-term survival advantage.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2357-2364 ◽  
Author(s):  
Shoji Hashimoto ◽  
Akihiro Iwamatsu ◽  
Masamichi Ishiai ◽  
Katsuya Okawa ◽  
Tomoki Yamadori ◽  
...  

Bruton’s tyrosine kinase (Btk) is a critical component in the B-cell antigen receptor (BCR)-coupled signaling pathway. Its deficiency in B cells leads to loss or marked reduction in the BCR-induced calcium signaling. It is known that this BCR-induced calcium signaling depends on the activation of phospholipase Cγ (PLCγ), which is mediated by Btk and another tyrosine kinase Syk and that the SH2 and pleckstrin homology (PH) domains of Btk play important roles in this activation process. Although the importance of the PH domain of Btk has been explained by its role in the membrane targeting of Btk, the functional significance of the SH2 domain in the calcium signaling has remained merely a matter of speculation. In this report, we identify that one of the major Btk-SH2 domain-binding proteins in B cells is BLNK (B-cell linker protein) and present evidences that the interaction of BLNK and the SH2 domain of Btk contributes to the complete tyrosine phosphorylation of PLCγ.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Kanika Vanshylla ◽  
Caren Bartsch ◽  
Christoffer Hitzing ◽  
Laura Krümpelmann ◽  
Jürgen Wienands ◽  
...  

2003 ◽  
Vol 197 (11) ◽  
pp. 1511-1524 ◽  
Author(s):  
Hae Won Sohn ◽  
Hua Gu ◽  
Susan K. Pierce

Members of the Cbl family of molecular adaptors play key roles in regulating tyrosine kinase-dependent signaling in a variety of cellular systems. Here we provide evidence that in B cells Cbl-b functions as a negative regulator of B cell antigen receptor (BCR) signaling during the normal course of a response. In B cells from Cbl-b–deficient mice cross-linking the BCRs resulted in sustained phosphorylation of Igα, Syk, and phospholipase C (PLC)-γ2, leading to prolonged Ca2+ mobilization, and increases in extracellular signal–regulated kinase (ERK) and c-Jun NH2-terminal protein kinase (JNK) phosphorylation and surface expression of the activation marker, CD69. Image analysis following BCR cross-linking showed sustained polarization of the BCRs into large signaling-active caps associated with phosphorylated Syk in Cbl-b–deficient B cells in contrast to the BCRs in Cbl-b–expressing B cells that rapidly proceeded to form small, condensed, signaling inactive caps. Significantly, prolonged phosphorylation of Syk correlated with reduced ubiquitination of Syk indicating that Cbl-b negatively regulates BCR signaling by targeting Syk for ubiquitination.


Sign in / Sign up

Export Citation Format

Share Document