scholarly journals Cellular and Viral Factors Regulate the Varicella-Zoster Virus gE Promoter during Viral Replication

2007 ◽  
Vol 81 (19) ◽  
pp. 10258-10267 ◽  
Author(s):  
Barbara Berarducci ◽  
Marvin Sommer ◽  
Leigh Zerboni ◽  
Jaya Rajamani ◽  
Ann M. Arvin

ABSTRACT Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for viral replication and is involved in cell-to-cell spread, secondary envelopment, and entry. We created a set of mutations in the gE promoter to investigate the role of viral and cellular transcriptional factors in regulation of the gE promoter. Deletion or point mutation of the two Sp1 sites in the gE promoter abolished Sp1 binding and IE62-mediated transactivation of the gE promoter in vitro. Incorporation of the deletion or the point mutations disrupting both of the Sp1 binding sites into the VZV genome was not compatible with viral replication. A point mutation altering the atypical Sp1 binding site was lethal, while altering the second site impaired VZV replication significantly, indicating functional differences between the two Sp1 binding sites. Deletions in the gE promoter that abolished putative binding sites for cellular transcriptional factors other than Sp1, identified by bioinformatics analysis, were inserted in the VZV genome. Replication of the viruses with mutations of the gE promoter did not differ from control recombinants in melanoma cells or primary human tonsil T cells in vitro. These deletions did not affect infection of human skin xenografts in SCIDhu mice. These results indicate that Sp1 is required for IE62-mediated transactivation of the gE promoter and that this transcriptional factor appears to be the only cellular factor essential for regulation of the gE promoter.

2004 ◽  
Vol 78 (22) ◽  
pp. 12406-12415 ◽  
Author(s):  
Jennifer Moffat ◽  
Chengjun Mo ◽  
Jason J. Cheng ◽  
Marvin Sommer ◽  
Leigh Zerboni ◽  
...  

ABSTRACT Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for VZV replication. To further analyze the functions of gE in VZV replication, a full deletion and point mutations were made in the 62-amino-acid (aa) C-terminal domain. Targeted mutations were introduced in YAGL (aa 582 to 585), which mediates gE endocytosis, AYRV (aa 568 to 571), which targets gE to the trans-Golgi network (TGN), and SSTT, an “acid cluster” comprising a phosphorylation motif (aa 588 to 601). Substitutions Y582G in YAGL, Y569A in AYRV, and S593A, S595A, T596A, and T598A in SSTT were introduced into the viral genome by using VZV cosmids. These experiments demonstrated a hierarchy in the contributions of these C-terminal motifs to VZV replication and virulence. Deletion of the gE C terminus and mutation of YAGL were lethal for VZV replication in vitro. Mutations of AYRV and SSTT were compatible with recovery of VZV, but the AYRV mutation resulted in rapid virus spread in vitro and the SSTT mutation resulted in higher virus titers than were observed for the parental rOka strain. When the rOka-gE-AYRV and rOka-gE-SSTT mutants were evaluated in skin and T-cell xenografts in SCIDhu mice, interference with TGN targeting was associated with substantial attenuation, especially in skin, whereas the SSTT mutation did not alter VZV infectivity in vivo. These results provide the first information about how targeted mutations of this essential VZV glycoprotein affect viral replication in vitro and VZV virulence in dermal and epidermal cells and T cells within intact tissue microenvironments in vivo.


2008 ◽  
Vol 82 (12) ◽  
pp. 5825-5834 ◽  
Author(s):  
Xibing Che ◽  
Mike Reichelt ◽  
Marvin H. Sommer ◽  
Jaya Rajamani ◽  
Leigh Zerboni ◽  
...  

ABSTRACT The gene cluster composed of varicella-zoster virus (VZV) open reading frame 9 (ORF9) to ORF12 encodes four putative tegument proteins and is highly conserved in most alphaherpesviruses. In these experiments, the genes within this cluster were deleted from the VZV parent Oka (POKA) individually or in combination, and the consequences for VZV replication were evaluated with cultured cells in vitro and with human skin xenografts in SCID mice in vivo. As has been reported for ORF10, ORF11 and ORF12 were dispensable for VZV replication in melanoma and human embryonic fibroblast cells. In contrast, deletion of ORF9 was incompatible with the recovery of infectious virus. ORF9 localized to the virion tegument and formed complexes with glycoprotein E, which is an essential protein, in VZV-infected cells. Recombinants lacking ORF10 and ORF11 (POKAΔ10/11), ORF11 and ORF12 (POKAΔ11/12), or ORF10, ORF11 and ORF12 (POKAΔ10/11/12) were viable in cultured cells. Their growth kinetics did not differ from those of POKA, and nucleocapsid formation and virion assembly were not disrupted. In addition, these deletion mutants showed no differences compared to POKA in infectivity levels for primary human tonsil T cells. Deletion of ORF12 had no effect on skin infection, whereas replication of POKAΔ11, POKAΔ10/11, and POKAΔ11/12 was severely reduced, and no virus was recovered from skin xenografts inoculated with POKAΔ10/11/12. These results indicate that with the exception of ORF9, the individual genes within the ORF9-to-ORF12 gene cluster are dispensable and can be deleted simultaneously without any apparent effect on VZV replication in vitro but that the ORF10-to-ORF12 cluster is essential for VZV virulence in skin in vivo.


2021 ◽  
Vol 17 ◽  
pp. 174480692110521
Author(s):  
Seii Ohka ◽  
Souichi Yamada ◽  
Daisuke Nishizawa ◽  
Yoshiko Fukui ◽  
Hideko Arita ◽  
...  

Acute pain that is associated with herpes zoster (HZ) can become long-lasting neuropathic pain, known as chronic post-herpetic neuralgia (PHN), especially in the elderly. HZ is caused by the reactivation of latent varicella-zoster virus (VZV), whereas PHN is not attributed to ongoing viral replication. Although VZV infection reportedly induces neuronal cell fusion in humans, the pathogenesis of PHN is not fully understood. A genome-wide association study (GWAS) revealed significant associations between PHN and the rs12596324 single-nucleotide polymorphism (SNP) of the heparan sulfate 3- O-sulfotransferase 4 ( HS3ST4) gene in a previous study. To further examine whether this SNP is associated with both PHN and VZV reactivation, associations between rs12596324 and a history of HZ were statistically analyzed using GWAS data. HZ was significantly associated with the rs12596324 SNP of HS3ST4, indicating that HS3ST4 is related to viral replication. We investigated the influence of HS3ST4 expression on VZV infection in cultured cells. Fusogenic activity after VZV infection was enhanced in cells with HS3ST4 expression by microscopy. To quantitatively evaluate the fusogenic activity, we applied cytotoxicity assay and revealed that HS3ST4 expression enhanced cytotoxicity after VZV infection. Expression of the VZV glycoproteins gB, gH, and gL significantly increased cytotoxicity in cells with HS3ST4 expression by cytotoxicity assay, consistent with the fusogenic activity as visualized by fluorescence microscopy. HS3ST4 had little influence on viral genome replication, revealed by quantitative real-time polymerase chain reaction. These results suggest that HS3ST4 enhances cytotoxicity including fusogenic activity in the presence of VZV glycoproteins without enhancing viral genome replication.


2006 ◽  
Vol 80 (6) ◽  
pp. 3116-3121 ◽  
Author(s):  
Jeremy O. Jones ◽  
Marvin Sommer ◽  
Shaye Stamatis ◽  
Ann M. Arvin

ABSTRACT The varicella-zoster virus (VZV) ORF62/63 intergenic region was cloned between the Renilla and firefly luciferase genes, which acted as reporters of ORF62 and ORF63 transcription, and recombinant viruses were generated that carried these reporter cassettes along with the intact native sequences in the repeat regions of the VZV genome. In order to investigate the potential contributions of cellular transregulatory proteins to ORF62 and ORF63 transcription, recombinant reporter viruses with mutations of consensus binding sites for six proteins within the intergenic region were also created. The reporter viruses were used to evaluate ORF62 and ORF63 transcription during VZV replication in cultured fibroblasts and in skin xenografts in SCIDhu mice in vivo. Mutations in putative binding sites for heat shock factor 1 (HSF-1), nuclear factor 1 (NF-1), and one of two cyclic AMP-responsive elements (CRE) reduced ORF62 reporter transcription in fibroblasts, while mutations in binding sites for HSF-1, NF-1, and octamer binding proteins (Oct-1) increased ORF62 reporter transcription in skin. Mutations in one CRE and the NF-1 site altered ORF63 transcription in fibroblasts, while mutation of the Oct-1 binding site increased ORF63 reporter transcription in skin. The effect of each of these mutations implies that the intact binding site sequence regulates native ORF62 and ORF63 transcription. Mutation of the only NF-κB/Rel binding site had no effect on ORF62 or ORF63 transcription in vitro or in vivo. The segment of the ORF62/63 intergenic region proximal to ORF63 was most important for ORF63 transcription, but mutagenesis also altered ORF62 transcription, indicating that this region functions as a bidirectional promoter. This first analysis of the ORF62/63 intergenic region in the context of VZV replication indicates that it is a dual promoter and that cellular transregulatory factors affect the transcription of these key VZV regulatory genes.


Author(s):  
Daniel P. Depledge ◽  
Tomohiko Sadaoka ◽  
Werner J. D. Ouwendijk

Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, the lack of suitable in vitro models to study VZV latency have seriously hampered molecular studies of viral latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and have redefined our understanding of VZV latency and factors that initiate reactivation. Together, these findings pave the way for a new era of research that may finally unravel the precise molecular mechanisms that govern latency. In this review, we will summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.


1999 ◽  
Vol 73 (2) ◽  
pp. 1320-1330 ◽  
Author(s):  
Ming Ye ◽  
Karen M. Duus ◽  
Junmin Peng ◽  
David H. Price ◽  
Charles Grose

Varicella-zoster virus (VZV) glycoprotein gI is a type 1 transmembrane glycoprotein which is one component of the heterodimeric gE:gI Fc receptor complex. Like VZV gE, VZV gI was phosphorylated in both VZV-infected cells and gI-transfected cells. Preliminary studies demonstrated that a serine 343-proline 344 sequence located within the gI cytoplasmic tail was the most likely phosphorylation site. To determine which protein kinase catalyzed the gI phosphorylation event, we constructed a fusion protein, consisting of glutathione-S-transferase (GST) and the gI cytoplasmic tail, called GST-gI-wt. When this fusion protein was used as a substrate for gI phosphorylation in vitro, the results demonstrated that GST-gI-wt fusion protein was phosphorylated by a representative cyclin-dependent kinase (CDK) called P-TEFb, a homologue of CDK1 (cdc2). When serine 343 within the serine-proline phosphorylation site was replaced with an alanine residue, the level of phosphorylation of the gI fusion protein was greatly reduced. Subsequent experiments with individually immunoprecipitated mammalian CDKs revealed that the VZV gI fusion protein was phosphorylated best by CDK1, to a lesser degree by CDK2, and not at all by CDK6. Transient-transfection assays carried out in the presence of the specific CDK inhibitor roscovitine strongly supported the prior results by demonstrating a marked decrease in gI phosphorylation while gI protein expression was unaffected. Finally, the possibility that VZV gI contained a CDK phosphorylation site in its endodomain was of further interest because its partner, gE, contains a casein kinase II phosphorylation site in its endodomain; prior studies have established that CDK1 can phosphorylate casein kinase II.


2006 ◽  
Vol 72 (3) ◽  
pp. 171-177 ◽  
Author(s):  
John J. Docherty ◽  
Thomas J. Sweet ◽  
Erin Bailey ◽  
Seth A. Faith ◽  
Tristan Booth

Sign in / Sign up

Export Citation Format

Share Document