scholarly journals Promotion of a Subdominant CD8 T Cell Response during Murine Gammaherpesvirus 68 Infection in the Absence of CD4 T Cell Help

2014 ◽  
Vol 88 (14) ◽  
pp. 7862-7869 ◽  
Author(s):  
Michael L. Freeman ◽  
Alan D. Roberts ◽  
Claire E. Burkum ◽  
David L. Woodland ◽  
Marcia A. Blackman

ABSTRACTCD8 and CD4 T cells are each critically important for immune control of murine gammaherpesvirus 68 (γHV68) infection. In immunocompetent mice, acute γHV68 infection results in lifelong latency, but in the absence of CD4 T cell help, mice succumb to viral recrudescence and disease. However, the requirements for CD4 T cell help in the generation and maintenance of antiviral CD8 T cell responses are incompletely understood, and it is unclear whether there are epitope-specific differences in the requirement of CD8 T cells for CD4 help. In this report, we characterized the CD8 T cell response to γHV68 in major histocompatibility complex (MHC) class II−/−mice, which lack CD4 T cells, or after antibody-mediated depletion of CD4 T cells. All antiviral CD8 T cells exhibited marked upregulation of surface expression of the inhibitory receptor programmed death-1 (PD-1), but surprisingly, while the immunodominant memory response appeared to be functionally impaired, helpless CD8 T cells of a subdominant specificity had increased numbers and enhanced functionality. Thus, we demonstrate differential requirements for CD4 help in the antiviral CD8 T cell response to a latent gammaherpesvirus.IMPORTANCEγHV68 is a mouse pathogen closely related to the oncogenic human γHVs, which infect a majority of the world's population. Reactivation of these viruses from latency can lead to complications, disease, and even death. CD4 T cells are required for complete immune control of long-term infection, in part by providing key signals to dendritic cells that in turn instruct optimal antiviral CD8 T cell responses. We have investigated multiple virus-specific CD8 T cell responses during infection and identified a subdominant CD8 T cell response that is numerically and functionally enhanced in the absence of CD4 T cell help. This occurs in spite of high surface expression of an inhibitory receptor and in contrast to the immunodominant response, which is impaired. Our data suggest that signals from CD4 T cells are important in maintaining the CD8 T cell hierarchy during γHV infections.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 606-606 ◽  
Author(s):  
Louis J. Picker ◽  
Andrew W. Sylwester ◽  
Bridget L. Mitchell ◽  
Cara Taormina ◽  
Christian Pelte ◽  
...  

Abstract Human Cytomegalovirus (HCMV) is among the largest and most complex of known viruses with 150–200nm virions enclosing a double stranded 230kb DNA genome capable of coding for >200 proteins. HCMV infection is life-long, and for the vast majority of immune competent individuals clinically benign. Disease occurs almost exclusively in the setting of immune deficiency, suggesting that the stable host-parasite relationship that characterizes these infections is the result of an evolutionarily “negotiated” balance between viral mechanisms of pathogenesis and the host immune response. In keeping with, and perhaps because of this balance, the human CD4+ T cell response to whole HCMV viral lysates is enormous, with median peripheral blood frequencies of HCMV-specific cells ~5–10 fold higher than for analogous preparations of other common viruses. Although certain HCMV ORFs have been identified as targets of either the CD4+ or CD8+ T cell response, the specificities comprising the CD4+ T cell response, and both the total frequencies and component parts of the CD8+ T cell response are unknown. Here, we used cytokine flow cytometry and ~14,000 overlapping 15mer peptides comprising all 213 HCMV ORFs encoding proteins >100 amino acids in length to precisely define the total CD4+ and CD8+ HCMV-specific T cell responses and the HCMV ORFs responsible for these responses in 33 HCMV-seropositive, HLA-disparate donors. An additional 9 HCMV seronegative donors were similarly examined to define the extent to which non-HCMV responses cross-react with HCMV-encoded epitopes. We found that when totaled, the median frequencies of HCMV-specific CD4+ and CD8+ T cells in the peripheral blood of the seropositive subjects were 4.0% and 4.5% for the total CD4+ or CD8+ T cell populations, respectively (which corresponds to 9.1% and 10.5% of the memory populations, respectively). The HCMV-specific CD4+ and CD8+ T cell responses included a median 12 and 7 different ORFs, respectively, and all told, 73 HCMV ORFs were identified as targets for both CD4+ and CD8+ T cells, 26 ORFs as targets for CD8+ T cells alone, and 43 ORFS as targets for CD4+ T cells alone. UL55, UL83, UL86, UL99, and UL122 were the HCMV ORFs most commonly recognized by CD4+ T cells; UL123, UL83, UL48, UL122 and UL28 were the HCMV ORFs most commonly recognized by CD8+ T cells. The relationship between immunogenicity and 1) HLA haplotype and 2) ORF expression and function will be discussed. HCMV-seronegative individuals were non-reactive with the vast majority of HCMV peptides. Only 7 potentially cross-reactive responses were identified (all by CD8+ T cells) to 3 ORFs (US32, US29 and UL116) out of a total of almost 4,000 potential responses, suggesting fortuitous cross-reactivity with HCMV epitopes is uncommon. These data provide the first glimpse of the total human T cell response to a complex infectious agent, and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans.


2007 ◽  
Vol 179 (2) ◽  
pp. 1113-1121 ◽  
Author(s):  
Christopher C. Kemball ◽  
Christopher D. Pack ◽  
Heath M. Guay ◽  
Zhu-Nan Li ◽  
David A. Steinhauer ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2686-2692 ◽  
Author(s):  
Laila E. Gamadia ◽  
Ester B. M. Remmerswaal ◽  
Jan F. Weel ◽  
Frederieke Bemelman ◽  
René A. W. van Lier ◽  
...  

The correlates of protective immunity to disease-inducing viruses in humans remain to be elucidated. We determined the kinetics and characteristics of cytomegalovirus (CMV)–specific CD4+ and CD8+ T cells in the course of primary CMV infection in asymptomatic and symptomatic recipients of renal transplants. Specific CD8+ cytotoxic T lymphocyte (CTL) and antibody responses developed regardless of clinical signs. CD45RA−CD27+CCR7− CTLs, although classified as immature effector cells in HIV infection, were the predominant CD8 effector population in the acute phase of protective immune reactions to CMV and were functionally competent. Whereas in asymptomatic individuals the CMV-specific CD4+ T-cell response preceded CMV-specific CD8+T-cell responses, in symptomatic individuals the CMV-specific effector-memory CD4+ T-cell response was delayed and only detectable after antiviral therapy. The appearance of disease symptoms in these patients suggests that functional CD8+ T-cell and antibody responses are insufficient to control viral replication and that formation of effector-memory CD4+ T cells is necessary for recovery of infection.


2021 ◽  
Author(s):  
Yu-Jung Lu ◽  
Palmira Barreira-Silva ◽  
Shayla Boyce ◽  
Jennifer Powers ◽  
Kelly Cavallo ◽  
...  

SummaryCD4 T cells are essential for immunity to tuberculosis because they produce cytokines including interferon-γ. Whether CD4 T cells act as “helper” cells to promote optimal CD8 T cell responses during Mycobacterium tuberculosis is unknown. Using two independent models, we show that CD4 T cell help enhances CD8 effector functions and prevents CD8 T cell exhaustion. We demonstrate synergy between CD4 and CD8 T cells in promoting the survival of infected mice. Purified helped, but not helpless, CD8 T cells efficiently restrict intracellular bacterial growth in vitro. Thus, CD4 T cell help plays an essential role in generating protective CD8 T cell responses against M. tuberculosis infection in vitro and in vivo. We infer vaccines that elicit both CD4 and CD8 T cells are more likely to be successful than vaccines that elicit only CD4 or CD8 T cells.


2013 ◽  
Vol 210 (8) ◽  
pp. 1591-1601 ◽  
Author(s):  
André Ballesteros-Tato ◽  
Beatriz León ◽  
Frances E. Lund ◽  
Troy D. Randall

CD4+ T cells promote CD8+ T cell priming by licensing dendritic cells (DCs) via CD40–CD154 interactions. However, the initial requirement for CD40 signaling may be replaced by the direct activation of DCs by pathogen-derived signals. Nevertheless, CD40–CD154 interactions are often required for optimal CD8+ T cell responses to pathogens for unknown reasons. Here we show that CD40 signaling is required to prevent the premature contraction of the influenza-specific CD8+ T cell response. CD40 is required on DCs but not on B cells or T cells, whereas CD154 is required on CD4+ T cells but not CD8+ T cells, NKT cells, or DCs. Paradoxically, even though CD154-expressing CD4+ T cells are required for robust CD8+ T cell responses, primary CD8+ T cell responses are apparently normal in the absence of CD4+ T cells. We resolved this paradox by showing that the interaction of CD40-bearing DCs with CD154-expressing CD4+ T cells precludes regulatory T cell (T reg cell)–mediated suppression and prevents premature contraction of the influenza-specific CD8+ T cell response. Thus, CD4+ T helper cells are not required for robust CD8+ T cell responses to influenza when T reg cells are absent.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1915-1915
Author(s):  
Kathrin Sebelin ◽  
Antje Meier ◽  
Matthias Papp-Vary ◽  
Stefan Oertel ◽  
Antonio Pezzutto ◽  
...  

Abstract EBV causes a chronic infection in >95 % of the population and despite its strong growth transforming capacity the majority of EBV infected individuals remain asymptomatic. In contrary, in immunosuppressed patients (pts) the risk of EBV reactivation and development of posttransplant lymphoproliferative disease (PTLD) is high. This is assumed to be due to a defective T cell response. Here we analyzed the EBV-specific CD8 and CD4 T cell response to different EBV latent and lytic antigens in pts with newly diagnosed PTLD. A prospective study of 10 pts after solid organ transplantation at time of diagnosis of PTLD was performed. EBV-specific CD8 T cells were examined by flow cytometric analysis using HLA-A2, HLA-B7 and HLA-B8 restricted tetramers incorporating BMLF1 (lytic), EBNA3 and LMP2 (both latent)-derived peptides. Staining was done in conjunction with mAbs against CD8 and CCR7. The ability of CD8 T cells to produce IFN-γ in response to the same EBV-derived peptides was measured by cytokine secretion assay. In healthy, EBV+ donors, we previously have found a consistent CD4 T cell response to the latent EBV antigen EBNA1. Therefore, EBNA1-specific CD4 T cell responses were monitored for IFN-g / IL-4 secretion after protein stimulation. T cell analysis was combined with EBV-DNA quantiation by real time PCR. We found EBV-specific CD8 T cell responses at low frequency in most pts with PTLD (8/10). Half of the pts showed low frequency EBNA1 specific CD4+ T cell responses. All pts with an EBNA1 specific CD4 T cell response showed an EBV-specific CD8 T cell response. In 2/10 pts we found no EBV-specific CD4 and CD8 T cell responses and both pts died under initial therapy. EBV-viral load was found to inversely correlate to absolute CD4 T cell counts. In comparison to healthy normal donors, no significant differences in EBV-specific T cell response could be observed. However, pts EBV-specific T cells were decreased in comparison to pts with high EBV viral load after TX and no PTLD as well as in comparison to pts with infectious mononucleosis. These results indicate that impairment of EBV-specific T cells is not due to clonal depletion, but rather seems to be due to impaired functional activation and expansion. We therefore conclude that pts with PTLD have an inadequatly low EBV-specific T cell responses which correlates to a low absolute CD4 T cell count. We propose a combined immunomonitoring of EBV viral load, absolute CD4 T cell count and EBV-specific T cell enumeration in pts at risk for development of PTLD. Further studies are needed to evaluate the role of EBV-specific T cell monitoring in immunosuppressed pts for prediction of PTLD and the potential usefulness of T cell monitoring as a prognostic marker in PTLD.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4284-4284
Author(s):  
Marcus O. Butler ◽  
Osamu Imataki ◽  
Yoshihiro Yamashita ◽  
Makito Tanaka ◽  
Sascha Ansén ◽  
...  

Abstract Abstract 4284 While adoptive T cell therapy is a promising treatment modality for cancer, the optimal approach to generate T cell grafts ex vivo is currently unknown. CD4+ T cells help generate effective immune responses by sustaining CD8+ T cell proliferation, preventing exhaustion, and establishing long-lived functional memory. Incorporation of CD4+ T cell help to expand CD8+ T cells may provide a novel strategy to generate CTL grafts for adoptive therapy. In mouse models, common γ-chain receptor cytokines and CD40/CD40L can mediate CD4+ T cell help. However, CD4+ T cell help in humans has yet to be fully defined. We therefore developed an in vitro model for human CD4+ T cell help, which utilizes a novel artificial APC, aAPC/mOKT3. K562-based aAPC/mOKT3 expresses a membranous form of anti-CD3 mAb, CD54, CD58, CD80, and CD83 and stimulates CD3+ T cells regardless of HLA haplotype or antigen specificity. Using aAPC/mOKT3, we stimulated CD8+ T cells in the presence or absence of CD4+ T cells and found that CD8+ T cells expanded better when coincubated with CD4+ T cells, suggesting the presence of CD4+ T cell help. Coculture experiments using transwell plates suggested that the observed CD4+ T cell help of CD8+ T cell expansion involved both soluble factors and cell-cell contact. To identify molecules mediating the observed CD4+ T cell help, supernatants of CD4+/CD8+ T cell mixed and separate cultures were measured for a panel of soluble factors. IL-2 and IL-21 were detected at lower levels in mixed cultures, consistent with more consumption or less production of these cytokines. Blockade of either IL-2 or IL-21 in CD4+/CD8+ T cell mixed cultures resulted in a reduction of CD8+ T cell expansion, indicating that, for both cytokines, more consumption rather than less production occurred and that IL-2 and IL-21 may serve as mediators of CD4+ T cell help. However, the addition of IL-21 to CD8+ T cells stimulated with aAPC/mOKT3 in the presence of IL-2 did not improve CD8+ T cell expansion, suggesting that IL-2 plus IL-21 cannot solely replace CD4+ T cell help. We found that the presence of CD4+ T cells upregulated the expression of IL-21R on CD8+ T cells. When we introduced IL-21R on CD8+ T cells and stimulated with aAPC/mOKT3 in the presence of IL-2 and IL-21, CD8+ T cell proliferation was restored. These results suggest that CD4+ T cells help CD8+ T cells proliferate ex vivo by secreting both IL-2/IL-21 and upregulating IL-21R. When peripheral CD3+ T cells from normal donors were stimulated with aAPC/mOKT3, the number of both CD4+ and CD8+ T cells increased. However, in contrast to other pan T cell expansion systems, aAPC/mOKT3 preferentially expanded CD8+ T cells. No obvious skewing in the Vβ usage of both CD4+ and CD8+ T cell populations was revealed by TCR Vβ repertoire analysis, supporting “unbiased” T cell expansion by aAPC/mOKT3. Moreover, HLA-restricted antigen-specific CD8+ CTL with high functional avidity could be generated from CD3+ T cells initially expanded for 4 weeks using aAPC/mOKT3. Using aAPC/mOKT3, tumor-infiltrating lymphocytes (TIL) were successfully expanded without adding soluble mAb or allogeneic feeder cells. As in peripheral T cell cultures, CD8+ T cells predominantly expanded in all cultures, including those that initially contained a minimal percentage of CD8+ T cells. Importantly, Foxp3+ Treg cells did not proliferate. Expanded T cells highly expressed CD27 and CD28, which are associated with T cell survival and persistence in vivo. They also secreted high levels of IFN-γ and IL-2, lower amounts of IL-4, and no IL-10. These results demonstrate that the aAPC/mOKT3-based system can expand functional CD8+ TIL in the presence of autologous CD4+ T cells. In conclusion, we have determined that CD4+ T cell-dependent CD8+ T cell expansion required both soluble factors secreted by and cell contact with CD4+ T cells. Among the soluble factors secreted by CD4+ T cells, IL-2 and IL-21 were necessary. Furthermore, upregulation of IL-21R on CD8+ T cells by CD4+ T cells was critical for an optimized response to IL-21. Thus, in humans, CD4+ T cells help CD8+ T cells proliferate by secreting IL-2/IL-21 and upregulating IL-21R. Our aAPC enabled expansion of CD8+ TIL in the presence of CD4+ T cell help without using soluble mAb or allogeneic feeder cells. Taken together, these results demonstrate the indispensable role of CD4+ T cell help on expanding CD8+ T cells and suggest a novel strategy to generate anti-tumor T cells ex vivo for adoptive therapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document