scholarly journals Identification of Novel MicroRNA-Like Molecules Generated from Herpesvirus and Host tRNA Transcripts

2010 ◽  
Vol 84 (19) ◽  
pp. 10344-10353 ◽  
Author(s):  
Tiffany A. Reese ◽  
Jing Xia ◽  
L. Steven Johnson ◽  
Xiang Zhou ◽  
Weixiong Zhang ◽  
...  

ABSTRACT We applied deep sequencing technology to small RNA fractions from cells lytically infected with murine gammaherpesvirus 68 (γHV68) in order to define in detail small RNAs generated from a cluster of tRNA-related polycistronic structures located at the left end of the viral genome. We detected 10 new candidate microRNAs (miRNAs), six of which were confirmed by Northern blot analysis, leaving four as provisional. In addition, we determined that previously identified and annotated viral miRNA molecules were not necessarily represented as the most abundant sequence originating from a transcript. Based on these new small RNAs and previously reported γHV68 miRNAs, we were able to further describe and annotate the distinctive γHV68 tRNA-miRNA structures. We used this deep sequencing data and computational analysis to identify similar structures in the mouse genome and validated that these host structures also give rise to small RNAs. This reveals a possible convergent usage of tRNA/polymerase III (pol III) transcripts to generate small RNAs from both mammalian and viral genomes.

2019 ◽  
Author(s):  
Ashley N. Knox ◽  
Alice Mueller ◽  
Eva M. Medina ◽  
Eric T. Clambey ◽  
Linda F. van Dyk

ABSTRACTRNA polymerase III (pol III) transcribes multiple non-coding (nc) RNAs that are essential for cellular function. Pol III-dependent transcription is also engaged during certain viral infections, including the gammaherpesviruses (γHVs), where pol III-dependent viral ncRNAs promote pathogenesis. Additionally, several host ncRNAs are upregulated during γHV infection and play integral roles in pathogenesis by facilitating viral establishment and gene expression. Here we sought to investigate how pol III-dependent transcriptional activity was regulated during gammaherpesvirus infection, using the murine gammaherpesvirus 68 (γHV68) system. To compare the transcriptional regulation of host and viral pol III-dependent ncRNAs, we analyzed a series of pol III-dependent promoters using a newly-generated luciferase reporter optimized to measure pol III activity. We measured promoter activity from these constructs at the translation level via luciferase activity and at the transcription level via RT-qPCR. We further measured endogenous ncRNA expression at single cell-resolution by flow cytometry. These studies demonstrated that lytic infection with γHV68 increased the transcriptional activity of multiple host and viral pol III-dependent promoters, and further identified the ability of accessory sequences to influence both baseline and inducible promoter activity after infection. These studies highlight how lytic gammaherpesvirus infection alters the transcriptional landscape of host cells to increase pol III-derived transcription, a process that may further modify cellular function and enhance viral gene expression and pathogenesis.IMPORTANCEGammaherpesviruses are a prime example of how viruses can alter the host transcriptional landscape to establish infection. Despite major insights into how these viruses modify RNA polymerase II-dependent generation of messenger RNAs, how these viruses influence the activity of host RNA polymerase III remains much less clear. Small non-coding RNAs produced by RNA polymerase III are increasingly recognized to play critical regulatory roles in cell biology and virus infection. Studies of RNA polymerase III dependent transcription are complicated by its use of multiple promoter types and diverse RNAs with variable stability and processing requirements. Here, we established a reporter system to directly study RNA polymerase III-dependent promoter responses during gammaherpesvirus infection and utilized single-cell flow cytometry-based methods to reveal that gammaherpesvirus lytic replication broadly induces pol III activity to enhance host and viral non-coding RNA expression within the infected cell.


Autoimmunity ◽  
2013 ◽  
Vol 46 (6) ◽  
pp. 399-408 ◽  
Author(s):  
Vinita S. Chauhan ◽  
Daniel A. Nelson ◽  
Ian Marriott ◽  
Kenneth L. Bost

2010 ◽  
Vol 84 (6) ◽  
pp. 2881-2892 ◽  
Author(s):  
Michael L. Freeman ◽  
Kathleen G. Lanzer ◽  
Tres Cookenham ◽  
Bjoern Peters ◽  
John Sidney ◽  
...  

ABSTRACT Murine gammaherpesvirus 68 (γHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics. ORF6487-specific cells predominate early in infection and then decline rapidly, whereas ORF61524-specific cells continue to expand through early latency, due to sustained epitope expression. However, the paucity of identified epitopes to this virus has limited our understanding of the overall complexities of CD8 T-cell immune control throughout infection. Here we screened 1,383 predicted H-2b-restricted peptides and identified 33 responses, of which 21 have not previously been reported. Kinetic analysis revealed a spectrum of T-cell responses based on the rapidity of their decline after the peak acute response that generally corresponded to the expression patterns of the two previously characterized epitopes. The slowly declining responses that were maintained during latency amplification proliferated more rapidly and underwent maturation of functional avidity over time. Furthermore, the kinetics of decline was accelerated following infection with a latency-null mutant virus. Overall, the data show that γHV68 infection elicits a highly heterogeneous CD8 T-cell response that segregates into two distinctive kinetic patterns controlled by differential epitope expression during the lytic and latency amplification stages of infection.


2003 ◽  
Vol 77 (15) ◽  
pp. 8588-8592 ◽  
Author(s):  
Louise M. C. Webb ◽  
Ian Clark-Lewis ◽  
Antonio Alcami

ABSTRACT Viruses encode proteins that disrupt chemokine responses. The murine gammaherpesvirus 68 gene M3 encodes a chemokine binding protein (vCKBP-3) which has no sequence similarity to chemokine receptors but inhibits chemokine receptor binding and activity. We have used a panel of CXCL8 analogs to identify the structural requirements for CXCL8 to bind to vCKBP-3 in a scintillation proximity assay. Our data suggest that vCKBP-3 acts by mimicking the binding of chemokine receptors to CXCL8.


Virology ◽  
2009 ◽  
Vol 387 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Danyang Gong ◽  
Jing Qi ◽  
Vaithilingaraja Arumugaswami ◽  
Ren Sun ◽  
Hongyu Deng

Neuropeptides ◽  
2011 ◽  
Vol 45 (1) ◽  
pp. 49-53 ◽  
Author(s):  
John P. Quinn ◽  
Anja Kipar ◽  
David J. Hughes ◽  
Elaine Bennett ◽  
Helen Cox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document