scholarly journals Hypermutation of an Ancient Human Retrovirus by APOBEC3G

2008 ◽  
Vol 82 (17) ◽  
pp. 8762-8770 ◽  
Author(s):  
Young Nam Lee ◽  
Michael H. Malim ◽  
Paul D. Bieniasz

ABSTRACT Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, but all are remnants of ancient retroviral infections and harbor inactivating mutations that render them replication defective. Nevertheless, as viral “fossils,” HERVs may provide insights into ancient retrovirus-host interactions and their evolution. Indeed, one endogenous retrovirus [HERV-K(HML-2)], which has replicated in humans for the past few million years but is now thought to be extinct, was recently reconstituted in a functional form, and infection assays based on it have been established. Here, we show that several human APOBEC3 proteins are intrinsically capable of mutating and inhibiting infection by HERV-K(HML-2) in cell culture. We also present striking evidence that two HERV-K(HML-2) proviruses that are fixed in the modern human genome (HERV-K60 and HERV-KI) were subjected to hypermutation by a cytidine deaminase. Inspection of the spectrum of mutations that are found in HERV-K proviruses in the human genome and HERV-K DNA generated during in vitro replication in the presence of each of the human APOBEC3 proteins unequivocally identifies APOBEC3G as the cytidine deaminase responsible for hypermutation of HERV-K60 and HERV-KI. This is a rare example of the antiretroviral effects of APOBEC3G in the setting of natural human infection, whose consequences have been fossilized in human DNA, and a striking example of inactivation of ancient retroviruses in humans through enzymatic cytidine deamination.

2000 ◽  
Vol 74 (8) ◽  
pp. 3715-3730 ◽  
Author(s):  
Michael Tristem

ABSTRACT Human endogenous retroviruses (HERVs) were first identified almost 20 years ago, and since then numerous families have been described. It has, however, been difficult to obtain a good estimate of both the total number of independently derived families and their relationship to each other as well as to other members of the familyRetroviridae. In this study, I used sequence data derived from over 150 novel HERVs, obtained from the Human Genome Mapping Project database, and a variety of recently identified nonhuman retroviruses to classify the HERVs into 22 independently acquired families. Of these, 17 families were loosely assigned to the class I HERVs, 3 to the class II HERVs and 2 to the class III HERVs. Many of these families have been identified previously, but six are described here for the first time and another four, for which only partial sequence information was previously available, were further characterized. Members of each of the 10 families are defective, and calculation of their integration dates suggested that most of them are likely to have been present within the human lineage since it diverged from the Old World monkeys more than 25 million years ago.


2008 ◽  
Vol 83 (6) ◽  
pp. 2429-2435 ◽  
Author(s):  
Leonard H. Evans ◽  
A. S. M. Alamgir ◽  
Nick Owens ◽  
Nick Weber ◽  
Kimmo Virtaneva ◽  
...  

ABSTRACT Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.


2003 ◽  
Vol 77 (20) ◽  
pp. 11268-11273 ◽  
Author(s):  
Nikolai Klymiuk ◽  
Mathias Müller ◽  
Gottfried Brem ◽  
Bernhard Aigner

ABSTRACT Endogenous retrovirus (ERV) sequences have been found in all mammals. In vitro and in vivo experiments revealed ERV activation and cross-species infection in several species. Sheep (Ovis aries) are used for various biotechnological purposes; however, they have not yet been comprehensively screened for ERV sequences. Therefore, the aim of the study was to classify the ERV sequences in the ovine genome (OERV) by analyzing the retroviral pro-pol sequences. Three OERV β families and nine OERV γ families were revealed. Novel open reading frames (ORF) in the amplified proviral fragment were found in one OERV β family and two OERV γ families. Hybrid OERV produced by putative recombination events were not detected. Quantitative analysis of the OERV sequences in the ovine genome revealed no relevant variations in the endogenous retroviral loads of different breeds. Expression analysis of different tissues from fetal and pregnant sheep detected mRNA from both gammaretrovirus families, showing ORF fragments. Thus, the release of retroviruses from sheep cells cannot be excluded.


2019 ◽  
Vol 93 (20) ◽  
Author(s):  
Rebecca S. Treger ◽  
Maria Tokuyama ◽  
Huiping Dong ◽  
Karen Salas-Briceno ◽  
Susan R. Ross ◽  
...  

ABSTRACT Endogenous retroviruses (ERV) are found throughout vertebrate genomes, and failure to silence their activation can have deleterious consequences on the host. Mutation and subsequent disruption of ERV loci is therefore an indispensable component of the cell-intrinsic defenses that maintain the integrity of the host genome. Abundant in vitro and in silico evidence have revealed that APOBEC3 cytidine-deaminases, including human APOBEC3G (hA3G), can potently restrict retrotransposition; yet, in vivo data demonstrating such activity is lacking, since no replication-competent human ERV have been identified. In mice deficient for Toll-like receptor 7 (TLR7), transcribed ERV loci can recombine and generate infectious ERV. In this study, we show that ectopic expression of hA3G can prevent the emergence of replication-competent, infectious ERV in Tlr7−/− mice. Mice encode one copy of Apobec3 in their genome. ERV reactivation in Tlr7−/− mice was comparable in the presence or absence of Apobec3. In contrast, expression of a human APOBEC3G transgene abrogated emergence of infectious ERV in the Tlr7−/− background. No ERV RNA was detected in the plasma of hA3G+ Apobec3−/− Tlr7−/− mice, and infectious ERV virions could not be amplified through coculture with permissive cells. These data reveal that hA3G can potently restrict active ERV in vivo and suggest that expansion of the APOBEC3 locus in primates may have helped to provide for the continued restraint of ERV in the human genome. IMPORTANCE Although APOBEC3 proteins are known to be important antiviral restriction factors in both mice and humans, their roles in the restriction of endogenous retroviruses (ERV) have been limited to in vitro studies. Here, we report that human APOBEC3G expressed as a transgene in mice prevents the emergence of infectious ERV from endogenous loci. This study reveals that APOBEC3G can powerfully restrict active retrotransposons in vivo and demonstrates how transgenic mice can be used to investigate host mechanisms that inhibit retrotransposons and reinforce genomic integrity.


2004 ◽  
Vol 78 (16) ◽  
pp. 8788-8798 ◽  
Author(s):  
Laurence Lavie ◽  
Patrik Medstrand ◽  
Werner Schempp ◽  
Eckart Meese ◽  
Jens Mayer

ABSTRACT The human genome harbors numerous distinct families of so-called human endogenous retroviruses (HERV) which are remnants of exogenous retroviruses that entered the germ line millions of years ago. We describe here the hitherto little-characterized betaretrovirus HERV-K(HML-5) family (named HERVK22 in Repbase) in greater detail. Out of 139 proviruses, only a few loci represent full-length proviruses, and many lack gag protease and/or env gene regions. We generated a consensus sequence from multiple alignment of 62 HML-5 loci that displays open reading frames for the four major retroviral proteins. Four HML-5 long terminal repeat (LTR) subfamilies were identified that are associated with monophyletic proviral bodies, implying different evolution of HML-5 LTRs and genes. Sequence analysis indicated that the proviruses formed approximately 55 million years ago. Accordingly, HML-5 proviral sequences were detected in Old World and New World primates but not in prosimians. No recent activity is associated with this HERV family. We also conclude that the HML-5 consensus sequence primer binding site is identical to methionine tRNA. Therefore, the family should be designated HERV-M. Our study provides important insights into the structure and evolution of the oldest betaretrovirus in the primate genome known to date.


2005 ◽  
Vol 79 (5) ◽  
pp. 2941-2949 ◽  
Author(s):  
Aline Flockerzi ◽  
Stefan Burkhardt ◽  
Werner Schempp ◽  
Eckart Meese ◽  
Jens Mayer

ABSTRACT The human genome harbors many distinct families of human endogenous retroviruses (HERVs) that stem from exogenous retroviruses that infected the germ line millions of years ago. Many HERV families remain to be investigated. We report in the present study the detailed characterization of the HERV-K14I and HERV-K14CI families as they are represented in the human genome. Most of the 68 HERV-K14I and 23 HERV-K14CI proviruses are severely mutated, frequently displaying uniform deletions of retroviral genes and long terminal repeats (LTRs). Both HERV families entered the germ line ∼39 million years ago, as evidenced by homologous sequences in hominoids and Old World primates and calculation of evolutionary ages based on a molecular clock. Proviruses of both families were formed during a brief period. A majority of HERV-K14CI proviruses on the Y chromosome mimic a higher evolutionary age, showing that LTR-LTR divergence data can indicate false ages. Fully translatable consensus sequences encoding major retroviral proteins were generated. Most HERV-K14I loci lack an env gene and are structurally reminiscent of LTR retrotransposons. A minority of HERV-K14I variants display an env gene. HERV-K14I proviruses are associated with three distinct LTR families, while HERV-K14CI is associated with a single LTR family. Hybrid proviruses consisting of HERV-K14I and HERV-W sequences that appear to have produced provirus progeny in the genome were detected. Several HERV-K14I proviruses harbor TRPC6 mRNA portions, exemplifying mobilization of cellular transcripts by HERVs. Our analysis contributes essential information on two more HERV families and on the biology of HERV sequences in general.


2009 ◽  
Vol 83 (22) ◽  
pp. 11550-11559 ◽  
Author(s):  
Marc-André Langlois ◽  
Kristin Kemmerich ◽  
Cristina Rada ◽  
Michael S. Neuberger

ABSTRACT APOBEC3 proteins are potent restriction factors against retroviral infection in primates. This restriction is accompanied by hypermutations in the retroviral genome that are attributable to the cytidine deaminase activity of the APOBEC3 proteins. Studies of nucleotide sequence diversity among endogenous gammaretroviruses suggest that the evolution of endogenous retroelements could have been shaped by the mutagenic cytidine deaminase activity of APOBEC3. In mice, however, APOBEC3 appears to restrict exogenous murine retroviruses in the absence of detectable levels of deamination. AKV is an endogenous retrovirus that is involved in causing a high incidence of thymic lymphoma in AKR mice. A comparative analysis of several mouse strains revealed a relatively low level of APOBEC3 expression in AKR mice. Here we show that endogenous mouse APOBEC3 restricts AKV infection and that this restriction likely reflects polymorphisms affecting APOBEC3 abundance rather than differences in the APOBEC3 isoforms expressed. We also observe that restriction of AKV by APOBEC3 is accompanied by G→A hypermutations in the viral genome. Our findings demonstrate that APOBEC3 acts as a restriction factor in rodents affecting the strain tropism of AKV, and they provide good support for the proposal that APOBEC3-mediated hypermutation contributed to the evolution of endogenous rodent retroviral genomes.


2015 ◽  
Author(s):  
Xiaoyu Zhuo ◽  
Cedric Feschotte

Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13-25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts.


1999 ◽  
Vol 73 (11) ◽  
pp. 9187-9195 ◽  
Author(s):  
Ralf R. Tönjes ◽  
Frank Czauderna ◽  
Reinhard Kurth

ABSTRACT The human genome harbors 25 to 50 proviral copies of the endogenous retrovirus type K (HERV-K), some of which code for the characteristic retroviral proteins Gag, Pol, and Env. For a genome-wide cloning approach of full-length and intact HERV-K proviruses, a human P1 gene library was screened with a gag-specific probe. Both HERV-K type 1 and 2 clones were isolated. Sixteen HERV-K type 2 proviral genomes were characterized by direct coupled in vitro transcription-in vitro translation assays to analyze the coding potential of isolatedgag, pol, and env amplicons from individual P1 clones. After determination of long terminal repeat (LTR) sequences and adjacent chromosomal integration sites by inverse PCR techniques, two HERV-K type 2 proviruses displaying long retroviral open reading frames (ORFs) were assigned to chromosomes 7 (C7) and 19 (C19) by using a human-rodent monochromosomal cell hybrid mapping panel. HERV-K(C7) shows an altered (YIDD-to-CIDD) motif in the reverse transcriptase domain. HERV-K(C19) is truncated in the 5′ LTR and harbors a defective protease gene due to a point mutation. Direct amplification of proviral structures from single chromosomes by using chromosomal flanking primers was performed by long PCR for HERV-K(C7) and HERV-K(C19) and for type 1 proviruses HERV-K10 and HERV-K18 from chromosomes 5 and 1, respectively. HERV-K18, in contrast to HERV-K10, bears no intact gag ORF and shows close homology to HERV-K/IDDMK1,222. In transfection experiments, HERV-K(C7) and HERV-K cDNA-based expression vectors yielded the proteins Gag and cORF whereas HERV-K10 vectors yielded Gag alone. The data suggest that the human genome does not contain an entire, intact proviral copy of HERV-K.


2019 ◽  
Vol 93 (16) ◽  
Author(s):  
Maria Paola Pisano ◽  
Nicole Grandi ◽  
Marta Cadeddu ◽  
Jonas Blomberg ◽  
Enzo Tramontano

ABSTRACTEight percent of the human genome is composed of human endogenous retroviruses (HERVs), remnants of ancestral germ line infections by exogenous retroviruses, which have been vertically transmitted as Mendelian characters. The HML-6 group, a member of the class II betaretrovirus-like viruses, includes several proviral loci with an increased transcriptional activity in cancer and at least two elements that are known for retaining an intact open reading frame and for encoding small proteins such as ERVK3-1, which is expressed in various healthy tissues, and HERV-K-MEL, a small Env peptide expressed in samples of cutaneous and ocular melanoma but not in normal tissues.IMPORTANCEWe reported the distribution and genetic composition of 66 HML-6 elements. We analyzed the phylogeny of the HML-6 sequences and identified two main clusters. We provided the first description of a Rec domain within theenvsequence of 23 HML-6 elements. A Rec domain was also predicted within the ERVK3-1 transcript sequence, revealing its expression in various healthy tissues. Evidence about the context of insertion and colocalization of 19 HML-6 elements with functional human genes are also reported, including the sequence 16p11.2, whose 5′ long terminal repeat overlapped the exon of one transcript variant of a cellular zinc finger upregulated and involved in hepatocellular carcinoma. The present work provides the first complete overview of the HML-6 elements in GRCh37(hg19), describing the structure, phylogeny, and genomic context of insertion of each locus. This information allows a better understanding of the genetics of one of the most expressed HERV groups in the human genome.


Sign in / Sign up

Export Citation Format

Share Document