scholarly journals Relative Contributions of Herpes Simplex Virus 1 ICP0 and vhs to Loss of Cellular IFI16 Vary in Different Human Cell Types

2016 ◽  
Vol 90 (18) ◽  
pp. 8351-8359 ◽  
Author(s):  
Megan H. Orzalli ◽  
Nicole M. Broekema ◽  
David M. Knipe

ABSTRACTThe herpes simplex virus 1 (HSV-1) ICP0 protein is an E3 ubiquitin ligase that promotes the degradation of several host cell proteins. Most studies have found that ICP0 promotes the loss of IFI16 in infected cells, but one study reported that ICP0 was not necessary or sufficient for loss of IFI16 in a tumor-derived cell line. Therefore, in this study, we examined the requirement for ICP0 in promoting the loss of IFI16 in several normal and tumor-derived cell lines. HSV-1 infection resulted in an observable decrease of IFI16 protein levels in normal human foreskin fibroblasts (HFFs), normal oral keratinocytes (NOKs), and HeLa cells but not in U2OS cells. During infection with an ICP0-null virus, we observed a reduced loss of IFI16 in HFFs and NOKs but not in HeLa cells. Ectopic expression of ICP0 from a transfected plasmid was sufficient to promote the loss of IFI16 in HFFs and NOKs. In the absence of ICP0, we observed a delayed reduction of IFI16 protein that correlated with a reduction in the steady-state levels ofIFI16mRNA. In addition, we show that the ICP0-independent loss of IFI16 in HeLa cells is dependent in part on the activity of the viral virion host shutoff (vhs) tegument protein. Together, these results demonstrate that HSV-1 promotes the loss of IFI16 through at least two mechanisms: (i) by ICP0-dependent degradation of IFI16 and (ii) by vhs-dependent turnover ofIFI16mRNA. In addition, this study highlights a potential intrinsic difference between normal and tumor-derived cells for the activities of IFI16 and HSV-1 ICP0.IMPORTANCEHSV-1 is a ubiquitous virus that establishes a lifetime persistent infection in humans. The relative success of HSV-1 as a pathogen is, in part, dependent on the expression of viral proteins that counteract host intrinsic defense mechanisms and that modulate immune responses during viral infection. In this study, we examined the relative roles of two viral gene products for the ability to promote loss of the antiviral IFI16 DNA sensor. We demonstrate that the viral immediate early ICP0 protein plays a dominant role in the loss of IFI16 in normal, but not tumor-derived, human cell lines. In contrast, viral vhs-mediated loss of IFI16 by mRNA destabilization is revealed to be dominant in tumor-derived cells in which ICP0 is nonfunctional. Together, these results contribute to our understanding of how HSV-1 modulates IFI16 protein levels and highlight cell-type-dependent differences between normal and tumor-derived cells.

1996 ◽  
Vol 7 (3) ◽  
pp. 128-137 ◽  
Author(s):  
T.H. Bacon ◽  
B.A. Howard

The replication of herpes simplex virus type 1 (HSV-1) or HSV-2 in MRC-5 cells infected at 0.01 pfu cell−1 treated continuously for 72 h, was inhibited more efficiently by penciclovir than aciclovir ( p = 0.0001). However, multiple cycles of replication were required in order to distinguish the compounds. Virus from cultures treated for 72 h with either compound, at 3 or 10 μg ml−1 was resistant to penciclovir and aciclovir (50% effective concentrations > 10 μg ml−1), but infectivity titres of supernatants from these aciclovirtreated cultures were higher than for penciclovir. Increased production of resistant virus in aciclovirtreated cultures may be the consequence of the less potent inhibition of virus replication by aciclovir. Penciclovir caused prolonged inhibition of HSV-1 and HSV-2 replication in three human cell lines infected at 1 pfu cell−1 following treatment for 18 h, whereas virus replication resumed rapidly after withdrawal of aciclovir. Neither compound showed prolonged activity after 18 h treatment, when the multiplicity of infection was reduced to 0.01 pfu cell−1. This surprising observation prompted experiments testing the effect of repeated pulse treatment in cultures infected at low multiplicity. Penciclovir inhibited HSV-1 replication significantly more effectively than aciclovir in MRC-5 cells infected at 10−4 pfu cell−1 treated daily for 6 h ( p < 0.001, n = 5) but only a trend was observed for HSV-2 ( p = 0.06, n = 6).


1982 ◽  
Vol 2 (3) ◽  
pp. 233-240
Author(s):  
L E Post ◽  
B Norrild ◽  
T Simpson ◽  
B Roizman

We are describing a system for the introduction, selection, and expression of eucaryotic genes in higher eucaryotic cells. The carrier consisted of the herpes simplex virus 1 (HSV-1) tk gene covalently linked to an HSV-1 alpha promoter directed away from the tk gene. In this study we fused to the alpha promoter the 5' transcribed noncoding sequences and the coding sequences of the chicken oviduct ovalbumin gene. Cells converted to the TK+ phenotype with this chimeric fragment produced an ovalbumin precursor which was processed and secreted into the extracellular fluid. The ovalbumin gene utilized the HSV-1 alpha promoter and was regulated as a viral gene inasmuch as inversion of the genomic DNA relative to the alpha promoter resulted in no ovalbumin synthesis, and production of ovalbumin was enhanced after superinfection with HSV-1. Synthesis of ovalbumin was not detected when cDNA was linked to the HSV-1 alpha promoter. The carrier system described in this study is suitable for introduction, selection, and expression of eucaryotic genes whose natural promoter is either weak or requires the presence of regulatory elements which may be absent from undifferentiated cells in culture.


Virology ◽  
2016 ◽  
Vol 495 ◽  
pp. 148-160 ◽  
Author(s):  
Carolina Sanabria-Solano ◽  
Carmen Elena Gonzalez ◽  
Nicolas Richerioux ◽  
Luc Bertrand ◽  
Slimane Dridi ◽  
...  

2020 ◽  
Vol 16 (12) ◽  
pp. e1009166
Author(s):  
Emilia A. H. Vanni ◽  
Joseph W. Foley ◽  
Andrew J. Davison ◽  
Marvin Sommer ◽  
Dongmei Liu ◽  
...  

Herpes simplex virus 1 (HSV-1) infects skin and mucosal epithelial cells and then travels along axons to establish latency in the neurones of sensory ganglia. Although viral gene expression is restricted during latency, the latency-associated transcript (LAT) locus encodes many RNAs, including a 2 kb intron known as the hallmark of HSV-1 latency. Here, we studied HSV-1 infection and the role of the LAT locus in human skin xenografts in vivo and in cultured explants. We sequenced the genomes of our stock of HSV-1 strain 17syn+ and seven derived viruses and found nonsynonymous mutations in many viral proteins that had no impact on skin infection. In contrast, deletions in the LAT locus severely impaired HSV-1 replication and lesion formation in skin. However, skin replication was not affected by impaired intron splicing. Moreover, although the LAT locus has been implicated in regulating gene expression in neurones, we observed only small changes in transcript levels that were unrelated to the growth defect in skin, suggesting that its functions in skin may be different from those in neurones. Thus, although the LAT locus was previously thought to be dispensable for lytic infection, we show that it is a determinant of HSV-1 virulence during lytic infection of human skin.


2015 ◽  
Vol 90 (1) ◽  
pp. 167-179 ◽  
Author(s):  
Roger D. Everett

ABSTRACTIntrinsic immunity is an aspect of antiviral defense that operates through diverse mechanisms at the intracellular level through a wide range of constitutively expressed cellular proteins. In the case of herpesviruses, intrinsic resistance involves the repression of viral gene expression during the very early stages of infection, a process that is normally overcome by viral tegument and/or immediate-early proteins. Thus, the balance between cellular repressors and virus-counteracting proteins determines whether or not a cell becomes productively infected. One aspect of intrinsic resistance to herpes simplex virus 1 (HSV-1) is conferred by components of promyelocytic leukemia nuclear bodies (PML NBs), which respond to infection by accumulating at sites that are closely associated with the incoming parental HSV-1 genomes. Other cellular proteins, including IFI16, which has been implicated in sensing pathogen DNA and initiating signaling pathways that lead to an interferon response, also respond to viral genomes in this manner. Here, studies of the dynamics of the response of PML NB components and IFI16 to invading HSV-1 genomes demonstrated that this response is extremely rapid, occurring within the first hour after addition of the virus, and that human Daxx (hDaxx) and IFI16 respond more rapidly than PML. In the absence of HSV-1 regulatory protein ICP0, which counteracts the recruitment process, the newly formed, viral-genome-induced PML NB-like foci can fuse with existing PML NBs. These data are consistent with a model involving viral genome sequestration into such structures, thereby contributing to the low probability of initiation of lytic infection in the absence of ICP0.IMPORTANCEHerpesviruses have intimate interactions with their hosts, with infection leading either to the productive lytic cycle or to a quiescent infection in which viral gene expression is suppressed while the viral genome is maintained in the host cell nucleus. Whether a cell becomes lytically or quiescently infected can be determined through the competing activities of cellular repressors and viral activators, some of which counteract cell-mediated repression. Therefore, the events that occur within the earliest stages of infection can be of crucial importance. This paper describes the extremely rapid response to herpes simplex virus 1 infection of cellular protein IFI16, a sensor of pathogen DNA, and also of the PML nuclear body proteins PML and hDaxx, as revealed by live-cell microscopy. The data imply that these proteins can accumulate on or close to the viral genomes in a sequential manner which may lead to their sequestration and repression.


2020 ◽  
Vol 180 ◽  
pp. 104814
Author(s):  
Aqsa Iqbal ◽  
Rahul Suryawanshi ◽  
Tejabhiram Yadavalli ◽  
Ipsita Volety ◽  
Deepak Shukla

2018 ◽  
Vol 92 (7) ◽  
Author(s):  
Heba H. Mostafa ◽  
Thornton W. Thompson ◽  
Adam J. Konen ◽  
Steve D. Haenchen ◽  
Joshua G. Hilliard ◽  
...  

ABSTRACTIn the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations inUL39, which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypesin vivo, we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role ofUL39in KOS-NA's decreased pathogenicity, theUL39mutations were recombined into HSV-1 (generating UL39mut), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection.IMPORTANCEHSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NAin vivoand resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1.


2015 ◽  
Vol 90 (5) ◽  
pp. 2503-2513 ◽  
Author(s):  
Robert G. Abrisch ◽  
Tess M. Eidem ◽  
Petro Yakovchuk ◽  
Jennifer F. Kugel ◽  
James A. Goodrich

ABSTRACTLytic infection by herpes simplex virus 1 (HSV-1) triggers a change in many host cell programs as the virus strives to express its own genes and replicate. Part of this process is repression of host cell transcription by RNA polymerase II (Pol II), which also transcribes the viral genome. Here, we describe a global characterization of Pol II occupancy on the viral and host genomes in response to HSV-1 infection using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). The data reveal near-complete loss of Pol II occupancy throughout host cell mRNA genes, in both their bodies and promoter-proximal regions. Increases in Pol II occupancy of host cell genes, which would be consistent with robust transcriptional activation, were not observed. HSV-1 infection induced a more potent and widespread repression of Pol II occupancy than did heat shock, another cellular stress that widely represses transcription. Concomitant with the loss of host genome Pol II occupancy, we observed Pol II covering the HSV-1 genome, reflecting a high level of viral gene transcription. Interestingly, the positions of the peaks of Pol II occupancy at HSV-1 and host cell promoters were different. The primary peak of Pol II occupancy at HSV-1 genes is ∼170 bp upstream of where it is positioned at host cell genes, suggesting that specific steps in transcription are regulated differently at HSV-1 genes than at host cell mRNA genes.IMPORTANCEWe investigated the effect of herpes simplex virus 1 (HSV-1) infection on transcription of host cell and viral genes by RNA polymerase II (Pol II). The approach we used was to determine how levels of genome-bound Pol II changed after HSV-1 infection. We found that HSV-1 caused a profound loss of Pol II occupancy across the host cell genome. Increases in Pol II occupancy were not observed, showing that no host genes were activated after infection. In contrast, Pol II occupied the entire HSV-1 genome. Moreover, the pattern of Pol II at HSV-1 genes differed from that on host cell genes, suggesting a unique mode of viral gene transcription. These studies provide new insight into how HSV-1 causes changes in the cellular program of gene expression and how the virus coopts host Pol II for its own use.


2009 ◽  
Vol 84 (5) ◽  
pp. 2200-2211 ◽  
Author(s):  
Santos Rojas ◽  
Kara A. Corbin-Lickfett ◽  
Laurimar Escudero-Paunetto ◽  
Rozanne M. Sandri-Goldin

ABSTRACT Herpes simplex virus 1 (HSV-1) protein ICP27 is a multifunctional regulatory protein that is posttranslationally modified by phosphorylation during viral infection. ICP27 has been shown to be phosphorylated on three serine residues, specifically serine residues 16 and 18, which are within casein kinase 2 (CK2) sites, and serine residue 114, which is within a protein kinase A (PKA) site. Phosphorylation is an important regulatory mechanism that is reversible and controls many signaling pathways, protein-protein interactions, and protein subcellular localization. To determine the role of phosphorylation in modulating the activities of ICP27, we constructed phosphorylation site mutations at each of the three serine residues. Single, double, and triple viral mutants were created in which alanine or glutamic acid was substituted for serines 16, 18, and 114. ICP27 phosphorylation site mutants were defective in viral replication and viral gene expression. Notably, ICP4-containing replication compartment formation was severely compromised, with the appearance of small ring-like structures that persisted even at late times after infection. Neither the colocalization of ICP27 with RNA polymerase II nor the formation of Hsc70 nuclear foci was observed during infection with the phosphorylation site mutants, both of which occur during wild-type HSV-1 infection. These data indicate that several key events in which ICP27 plays a role are curtailed during infection with ICP27 phosphorylation site mutants.


2012 ◽  
Vol 86 (16) ◽  
pp. 8848-8858 ◽  
Author(s):  
M. P. Nicoll ◽  
J. T. Proença ◽  
V. Connor ◽  
S. Efstathiou

Herpes simplex virus 1 (HSV-1) can establish life-long latent infection in sensory neurons, from which periodic reactivation can occur. During latency, viral gene expression is largely restricted to the latency-associated transcripts (LATs). While not essential for any phase of latency, to date the LATs have been shown to increase the efficiency of both establishment and reactivation of latency in small-animal models. We sought to investigate the role of LAT expression in the frequency of latency establishment within the ROSA26R reporter mouse model utilizing Cre recombinase-encoding recombinant viruses harboring deletions of the core LAT promoter (LAP) region. HSV-1 LAT expression was observed to influence the number of latently infected neurons in trigeminal but not dorsal root ganglia. Furthermore, the relative frequencies of latency establishment of LAT-positive and LAT-negative viruses are influenced by the inoculum dose following infection of the mouse whisker pads. Finally, analysis of the infected cell population at two latent time points revealed a relative loss of latently infected cells in the absence of LAT expression. We conclude that the HSV-1 LATs facilitate the long-term stability of the latent cell population within the infected host and that interpretation of LAT establishment phenotypes is influenced by infection methodology.


Sign in / Sign up

Export Citation Format

Share Document