scholarly journals Antagonistic Relationship between Human Cytomegalovirus pUL27 and pUL97 Activities during Infection

2015 ◽  
Vol 89 (20) ◽  
pp. 10230-10246 ◽  
Author(s):  
Tarin M. Bigley ◽  
Justin M. Reitsma ◽  
Scott S. Terhune

ABSTRACTHuman cytomegalovirus (HCMV) is a member of the betaherpesvirus family. During infection, an array of viral proteins manipulates the host cell cycle. We have previously shown that expression of HCMV pUL27 results in increased levels of the cyclin-dependent kinase (CDK) inhibitor p21Cip1. In addition, pUL27 is necessary for the full antiviral activity of the pUL97 kinase inhibitor maribavir (MBV). The purpose of this study was to define the relationship between pUL27 and pUL97 and its role in MBV antiviral activity. We observed that expression of wild-type but not kinase-inactive pUL97 disrupted pUL27-dependent induction of p21Cip1. Furthermore, pUL97 associated with and promoted the phosphorylation of pUL27. During infection, inhibition of the kinase resulted in elevated levels of p21Cip1in wild-type virus but not a pUL27-deficient virus. We manipulated the p21Cip1levels to evaluate the functional consequence to MBV. Overexpression of p21Cip1restored MBV activity against a pUL27-deficient virus, while disruption reduced activity against wild-type virus. We provide evidence that the functional target of p21Cip1in the context of MBV activity is CDK1. One CDK-like activity of pUL97 is to phosphorylate nuclear lamin A/C, resulting in altered nuclear morphology and increased viral egress. In the presence of MBV, we observed that infection using a pUL27-deficient virus still altered the nuclear morphology. This was prevented by the addition of a CDK inhibitor. Overall, our results demonstrate an antagonistic relationship between pUL27 and pUL97 activities centering on p21Cip1and support the idea that CDKs can complement some activities of pUL97.IMPORTANCEHCMV infection results in severe disease upon immunosuppression and is a leading cause of congenital birth defects. Effective antiviral compounds exist, yet they exhibit high levels of toxicity, are not approved for use during pregnancy, and can result in antiviral resistance. Our studies have uncovered new information regarding the antiviral efficacy of the HCMV pUL97 kinase inhibitor MBV as it relates to the complex interplay between pUL97 and a second HCMV protein, pUL27. We demonstrate that pUL97 functions antagonistically against pUL27 by phosphorylation-dependent inactivation of pUL27-mediated induction of p21Cip1. In contrast, we provide evidence that p21Cip1functions to antagonize overlapping activities between pUL97 and cellular CDKs. In addition, these studies further support the notion that CDK inhibitors or p21Cip1activators might be useful in combination with MBV to effectively inhibit HCMV infections.

2016 ◽  
Vol 90 (6) ◽  
pp. 3229-3242 ◽  
Author(s):  
Young-Eui Kim ◽  
Se Eun Oh ◽  
Ki Mun Kwon ◽  
Chan Hee Lee ◽  
Jin-Hyun Ahn

ABSTRACTHuman cytomegalovirus (HCMV) protein pUL48 is closely associated with the capsid and has a deubiquitinating protease (DUB) activity in its N-terminal region. Although this DUB activity moderately increases virus replication in cultured fibroblast cells, the requirements of the N-terminal region of pUL48 in the viral replication cycle are not fully understood. In this study, we characterized the recombinant viruses encoding UL48(ΔDUB/NLS), which lacks the DUB domain and the adjacent nuclear localization signal (NLS), UL48(ΔDUB), which lacks only the DUB, and UL48(Δ360–1200), which lacks the internal region (amino acids 360 to 1200) downstream of the DUB/NLS. While ΔDUB/NLS and Δ360–1200 mutant viruses did not grow in fibroblasts, the ΔDUB virus replicated to titers 100-fold lower than those for wild-type virus and showed substantially reduced viral gene expression at low multiplicities of infection. The DUB domain contained ubiquitination sites, and DUB activity reduced its own proteasomal degradation intrans. Deletion of the DUB domain did not affect the nuclear and cytoplasmic localization of pUL48, whereas the internal region (360–1200) was necessary for cytoplasmic distribution. In coimmunoprecipitation assays, pUL48 interacted with three tegument proteins (pUL47, pUL45, and pUL88) and two capsid proteins (pUL77 and pUL85) but the DUB domain contributed to only pUL85 binding. Furthermore, we found that the ΔDUB virus showed reduced virion stability and less efficiently delivered its genome into the cell than the wild-type virus. Collectively, our results demonstrate that the N-terminal DUB domain of pUL48 contributes to efficient viral growth by regulating its own stability and promoting virion stabilization and virus entry.IMPORTANCEHCMV pUL48 and its herpesvirus homologs play key roles in virus entry, regulation of immune signaling pathways, and virion assembly. The N terminus of pUL48 contains the DUB domain, which is well conserved among all herpesviruses. Although studies using the active-site mutant viruses revealed that the DUB activity promotes viral growth, the exact role of this region in the viral life cycle is not fully understood. In this study, using the mutant virus lacking the entire DUB domain, we demonstrate that the DUB domain of pUL48 contributes to viral growth by regulating its own stability via autodeubiquitination and promoting virion stability and virus entry. This report is the first to demonstrate the characteristics of the mutant virus with the entire DUB domain deleted, which, along with information on the functions of this region, is useful in dissecting the functions associated with pUL48.


2012 ◽  
Vol 93 (4) ◽  
pp. 716-721 ◽  
Author(s):  
Hye Jin Shin ◽  
Young-Eui Kim ◽  
Eui Tae Kim ◽  
Jin-Hyun Ahn

Human cytomegalovirus (HCMV) immediate-early (IE) 1 protein associates with chromosomes in mitotic cells using its carboxyl-terminal 16 aa region. However, the role of this IE1 activity in viral growth has not been evaluated in the context of mutant virus infection. We produced a recombinant HCMV encoding mutant IE1 with the carboxyl-terminal chromosome-tethering domain (CTD) deleted. This IE1(ΔCTD) virus grew like the wild-type virus in fibroblasts, indicating that the CTD is not essential for viral replication in permissive cells. Unlike wild-type virus infections, PML and STAT2, which interact with IE1, did not accumulate at mitotic chromosomes in IE1(ΔCTD) virus-infected fibroblasts, demonstrating that their associations with chromosomes are IE1 CTD-dependent. IE1 SUMOylation did not affect IE1 association with chromosomes. Our results provide genetic evidence that the CTD is required for the associations of IE1, PML and STAT2 with mitotic chromosomes, but that these IE1-related activities are not essential for viral replication in fibroblasts.


2006 ◽  
Vol 80 (17) ◽  
pp. 8371-8378 ◽  
Author(s):  
Xuyan Feng ◽  
Jörg Schröer ◽  
Dong Yu ◽  
Thomas Shenk

ABSTRACT We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.


2009 ◽  
Vol 83 (23) ◽  
pp. 12046-12056 ◽  
Author(s):  
Eui Tae Kim ◽  
Se Eun Oh ◽  
Yun-Ok Lee ◽  
Wade Gibson ◽  
Jin-Hyun Ahn

ABSTRACT The human cytomegalovirus (HCMV) open reading frame UL48 encodes a 253-kDa tegument protein that is closely associated with the capsid and was recently shown to have ubiquitin-specific protease activity (J. Wang, A. N. Loveland, L. M. Kattenhorn, H. L. Ploegh, and W. Gibson, J. Virol. 80:6003-6012, 2006). Here, we examined the cleavage specificity of this deubiquitinase (DUB) and replication characteristics of an active-site mutant virus. The purified catalytic domain of the UL48 DUB (1 to 359 amino acids), corresponding to the herpes simplex virus UL36USP DUB (L. M. Kattenhorn, G. A. Korbel, B. M. Kessler, E. Spooner, and H. L. Ploegh, Mol. Cell 19:547-557, 2005), efficiently released ubiquitin but not ubiquitin-like modifications from a hemagglutinin peptide substrate. Mutating the active-site residues Cys24 or His162 (C24S and H162A, respectively) abolished this activity. The HCMV UL48 and HSV UL36USP DUBs cleaved both Lys48- and Lys63-linked ubiquitin dimers and oligomers, showing more activity toward Lys63 linkages. The DUB activity of the full-length UL48 protein immunoprecipitated from virus-infected cells also showed a better cleavage of Lys63-linked ubiquitinated substrates. An HCMV (Towne) mutant virus in which the UL48 DUB activity was destroyed [UL48(C24S)] produced 10-fold less progeny virus and reduced amounts of viral proteins compared to wild-type virus at a low multiplicity of infection. The mutant virus also produced perceptibly less overall deubiquitination than the wild-type virus. Our findings demonstrate that the HCMV UL48 DUB contains both a ubiquitin-specific carboxy-terminal hydrolase activity and an isopeptidase activity that favors ubiquitin Lys63 linkages and that these activities can influence virus replication in cultured cells.


2005 ◽  
Vol 79 (20) ◽  
pp. 12961-12968 ◽  
Author(s):  
Amy N. Loveland ◽  
Chee-Kai Chan ◽  
Edward J. Brignole ◽  
Wade Gibson

ABSTRACT The cytomegalovirus (CMV) maturational protease, assemblin, contains an “internal” (I) cleavage site absent from its homologs in other herpesviruses. Blocking this site for cleavage did not prevent replication of the resulting I− mutant virus. However, cells infected with the I− virus showed increased amounts of a fragment produced by cleavage at the nearby “cryptic” (C) site, suggesting that its replication may bypass the I-site block by using the C site as an alternate cleavage pathway. To test this and further examine the biological importance of these cleavages, we constructed two additional virus mutants—one blocked for C-site cleavage and another blocked for both I- and C-site cleavage. Infectivity comparisons with the parental wild-type virus showed that the I− mutant was the least affected for virus production, whereas infectivity of the C− mutant was reduced by ≈40% and when both sites were blocked virus infectivity was reduced by nearly 90%, providing the first evidence that these cleavages have biological significance. We also present and discuss evidence suggesting that I-site cleavage destabilizes assemblin and its fragments, whereas C-site cleavage does not.


2002 ◽  
Vol 76 (3) ◽  
pp. 1043-1050 ◽  
Author(s):  
Jill T. Bechtel ◽  
Thomas Shenk

ABSTRACT The human cytomegalovirus UL47 open reading frame encodes a 110-kDa protein that is a component of the virion tegument. We have constructed a cytomegalovirus mutant, ADsubUL47, in which the central portion of the UL47 open reading frame has been replaced by two marker genes. The mutant replicated to titers 100-fold lower than those for wild-type virus after infection at either a high or a low input multiplicity in primary human fibroblasts but was substantially complemented on cells expressing UL47 protein. A revertant virus in which the mutation was repaired, ADrevUL47, replicated with wild-type kinetics. Mutant virions lacked UL47 protein and contained reduced amounts of UL48 protein. The mutant was found to be less infectious than wild-type virus, and a defect very early in the replication cycle was observed. Transcription of the viral immediate-early 1 gene was delayed by 8 to 10 h. However, this delay was not the result of a defect in virus entry or of the inability of virion proteins to transactivate the major immediate-early promoter. We also show that the UL47 protein coprecipitated with the UL48 and UL69 tegument proteins and the UL86-encoded major capsid protein. We propose that a UL47-containing complex is involved in the release of viral DNA from the disassembling virus particle and that the loss of UL47 protein causes this process to be delayed.


2021 ◽  
Author(s):  
Anu Haveri ◽  
Nina Ekström ◽  
Anna Solastie ◽  
Camilla Virta ◽  
Pamela Österlund ◽  
...  

Understanding for how long antibodies persist following Severe acute respiratory coronavirus 2 (SARS-CoV-2) infection provides important insight into estimating the duration of immunity induced by infection. We assessed the persistence of serum antibodies following wild-type SARS-CoV-2 infection six and twelve months after diagnosis in 367 individuals of whom 13% had severe disease requiring hospitalization. We determined the SARS-CoV-2 spike (S-IgG) and nucleoprotein IgG concentrations and the proportion of subjects with neutralizing antibodies (NAb). We also measured the NAb titers among a smaller subset of participants (n=78) against a wild-type virus (B.1) and three variants of concern (VOCs): Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2). We found that NAb against the wild-type virus and S-IgG persisted in 89% and 97% of subjects for at least twelve months after infection, respectively. IgG and NAb levels were higher after severe infection. NAb titers were significantly lower against variants compared to the wild-type virus.


2002 ◽  
Vol 76 (2) ◽  
pp. 928-932 ◽  
Author(s):  
Julie A. Heider ◽  
Yongjun Yu ◽  
Thomas Shenk ◽  
James C. Alwine

ABSTRACT A human cytomegalovirus mutant (TNsubIE2P) was constructed with alanine substitutions of four residues (T27, S144, T233, and S234) previously shown to be phosphorylated in the immediate-early 2 (IE2) protein. This mutant grew as well as the wild type at both low and high multiplicities of infection. The mutant activated the major immediate-early, UL4, and UL44 promoters to similar levels, and with similar kinetics, as wild-type virus. However, the TNsubIE2P mutant virus transactivated an endogenous simian virus 40 early promoter 4 h earlier and to higher levels than the wild-type virus in infected human fibroblasts. The modification of the IE2 protein by SUMO-1 (i.e., its sumoylated state) was also examined.


2005 ◽  
Vol 18 (1) ◽  
pp. 70-80 ◽  
Author(s):  
Sophie Hambleton ◽  
Anne A. Gershon

SUMMARY Varicella-zoster virus (VZV), the cause of chickenpox and shingles, is a pathogen in retreat following the introduction of mass vaccination in the United States in 1995. The live attenuated Oka vaccine, which is safe and immunogenic, gives good protection against both varicella and zoster in the short to medium term. It has undoubtedly been highly effective to date in reducing all forms of varicella, especially severe disease. However, the huge pool of latent wild-type virus in the population represents a continuing threat. Both the biology and the epidemiology of VZV disease suggest that new vaccination strategies will be required over time.


Sign in / Sign up

Export Citation Format

Share Document