scholarly journals Virus-Like Vesicle-Based Therapeutic Vaccine Vectors for Chronic Hepatitis B Virus Infection

2015 ◽  
Vol 89 (20) ◽  
pp. 10407-10415 ◽  
Author(s):  
Tracy D. Reynolds ◽  
Linda Buonocore ◽  
Nina F. Rose ◽  
John K. Rose ◽  
Michael D. Robek

ABSTRACTMore than 500,000 people die each year from the liver diseases that result from chronic hepatitis B virus (HBV) infection. Therapeutic vaccines, which aim to elicit an immune response capable of controlling the virus, offer a potential new treatment strategy for chronic hepatitis B. Recently, an evolved, high-titer vaccine platform consisting of Semliki Forest virus RNA replicons that express the vesicular stomatitis virus glycoprotein (VSV G) has been described. This platform generates virus-like vesicles (VLVs) that contain VSV G but no other viral structural proteins. We report here that the evolved VLV vector engineered to additionally express the HBV middle surface envelope glycoprotein (MHBs) induces functional CD8 T cell responses in mice. These responses were greater in magnitude and broader in specificity than those obtained with other immunization strategies, including recombinant protein and DNA. Additionally, a single immunization with VLV-MHBs protected mice from HBV hydrodynamic challenge, and this protection correlated with the elicitation of a CD8 T cell recall response. In contrast to MHBs, a VLV expressing HBV core protein (HBcAg) neither induced a CD8 T cell response in mice nor protected against challenge. Finally, combining DNA and VLV-MHBs immunization led to induction of HBV-specific CD8 T cell responses in a transgenic mouse model of chronic HBV infection. The ability of VLV-MHBs to induce a multispecific T cell response capable of controlling HBV replication, and to generate immune responses in a tolerogenic model of chronic infection, indicates that VLV vaccine platforms may offer a unique strategy for HBV therapeutic vaccination.IMPORTANCEHBV infection is associated with significant morbidity and mortality. Furthermore, treatments for chronic infection are suboptimal and rarely result in complete elimination of the virus. Therapeutic vaccines represent a unique approach to HBV treatment and have the potential to induce long-term control of infection. Recently, a virus-based vector system that combines the nonstructural proteins of Semliki Forest virus with the VSV glycoprotein has been described. In this study, we used this system to construct a novel HBV vaccine and demonstrated that the vaccine is capable of inducing virus-specific immune responses in mouse models of acute and chronic HBV replication. These findings highlight the potential of this new vaccine system and support the idea that highly immunogenic vaccines, such as viral vectors, may be useful in the treatment of chronic hepatitis B.

2002 ◽  
Vol 36 ◽  
pp. 88
Author(s):  
Nicoletta Mathou ◽  
George Webster ◽  
James Gotto ◽  
David Brown ◽  
Geoffrey Dusheiko

2012 ◽  
Vol 42 (5) ◽  
pp. 1180-1191 ◽  
Author(s):  
Wei Wu ◽  
Yu Shi ◽  
Shuping Li ◽  
Yun Zhang ◽  
Yanning Liu ◽  
...  

2008 ◽  
Vol 205 (9) ◽  
pp. 2111-2124 ◽  
Author(s):  
Abhishek Das ◽  
Matthew Hoare ◽  
Nathan Davies ◽  
A. Ross Lopes ◽  
Claire Dunn ◽  
...  

The inflamed liver in chronic hepatitis B virus (HBV) infection (CHB) is characterized by a large influx of non–virus-specific CD8 T cells. Little is known about the functional capacity of these lymphocytes, which could provide insights into mechanisms of failure of viral control and liver damage in this setting. We compared the effector function of total circulating and intrahepatic CD8 T cells in CHB patients and healthy donors. We demonstrated that CD8 T cells from CHB patients, regardless of their antigen specificity, were impaired in their ability to produce interleukin-2 and proliferate upon TCR-dependent stimulation. In contrast, these CD8 T cells had preserved production of the proinflammatory cytokines interferon-γ and tumor necrosis factor-α. This aberrant functional profile was partially attributable to down-regulation of the proximal T cell receptor signaling molecule CD3ζ, and could be corrected in vitro by transfection of CD3ζ or replenishment of the amino acid arginine required for its expression. We provide evidence for depletion of arginine in the inflamed hepatic microenvironment as a potential mechanism for these defects in global CD8 T cell signaling and function. These data imply that polarized CD8 T cells within the HBV-infected liver may impede proliferative antiviral effector function, while contributing to the proinflammatory cytokine environment.


2013 ◽  
Vol 94 (12) ◽  
pp. 2717-2723 ◽  
Author(s):  
Xiaoling Chen ◽  
Wenbo Wang ◽  
Shufeng Wang ◽  
Gang Meng ◽  
Mengjun Zhang ◽  
...  

Hepatitis B virus (HBV) infection is a worldwide public health problem. HBV-specific CD8+ CTLs are vital for viral clearance. Identification of immunodominant CTL epitopes from HBV-associated antigens is necessary for therapeutic vaccine development. We showed that the HLA-A*1101 allele is one of the most common alleles in both healthy individuals and chronic hepatitis B (CHB) patients in the Chongqing area, China. However, less than 10 % of epitopes of HBV-associated antigens have been identified in an HLA-A*1101 context. Here, we describe an immunodominant CD8+ T-cell response targeting a hepatitis B surface antigen determinant (HBs295–304) restricted by HLA-A*1101 in both healthy individuals and CHB patients. Moreover, HBs295–304 is more immunogenic for CTL induction than a known naturally HLA-A*1101-processed epitope from hepatitis B core antigen (HBc88–96). Therefore, the newly identified epitope, HBs295–304, will benefit the development of immunotherapeutic approaches for HBV infection.


Sign in / Sign up

Export Citation Format

Share Document