scholarly journals Pivotal Role of Receptor-Interacting Protein Kinase 1 and Mixed Lineage Kinase Domain-Like in Neuronal Cell Death Induced by the Human Neuroinvasive Coronavirus OC43

2016 ◽  
Vol 91 (1) ◽  
Author(s):  
Mathieu Meessen-Pinard ◽  
Alain Le Coupanec ◽  
Marc Desforges ◽  
Pierre J. Talbot

ABSTRACT Human coronaviruses (HCoV) are respiratory pathogens with neuroinvasive, neurotropic, and neurovirulent properties, highlighting the importance of studying the potential implication of these viruses in neurological diseases. The OC43 strain (HCoV-OC43) was reported to induce neuronal cell death, which may participate in neuropathogenesis. Here, we show that HCoV-OC43 harboring two point mutations in the spike glycoprotein (rOC/Us183–241) was more neurovirulent than the wild-type HCoV-OC43 (rOC/ATCC) in mice and induced more cell death in murine and human neuronal cells. To evaluate the role of regulated cell death (RCD) in HCoV-OC43-mediated neural pathogenesis, we determined if knockdown of Bax, a key regulator of apoptosis, or RIP1, a key regulator of necroptosis, altered the percentage of neuronal cell death following HCoV-OC43 infection. We found that Bax-dependent apoptosis did not play a significant role in RCD following infection, as inhibition of Bax expression mediated by RNA interference did not confer cellular protection against the cell death process. On the other hand, we demonstrated that RIP1 and MLKL were involved in neuronal cell death, as RIP1 knockdown and chemical inhibition of MLKL significantly increased cell survival after infection. Taken together, these results indicate that RIP1 and MLKL contribute to necroptotic cell death after HCoV-OC43 infection to limit viral replication. However, this RCD could lead to neuronal loss in the mouse CNS and accentuate the neuroinflammation process, reflecting the severity of neuropathogenesis. IMPORTANCE Because they are naturally neuroinvasive and neurotropic, human coronaviruses are suspected to participate in the development of neurological diseases. Given that the strain OC43 is neurovirulent in mice and induces neuronal cell death, we explored the neuronal response to infection by characterizing the activation of RCD. Our results revealed that classical apoptosis associated with the Bax protein does not play a significant role in HCoV-OC43-induced neuronal cell death and that RIP1 and MLKL, two cellular proteins usually associated with necroptosis (an RCD back-up system when apoptosis is not adequately induced), both play a pivotal role in the process. As necroptosis disrupts cellular membranes and allows the release of damage-associated molecular patterns (DAMP) and possibly induces the production of proinflammatory cytokines, it may represent a proinflammatory cell death mechanism that contributes to excessive neuroinflammation and neurodegeneration and eventually to neurological disorders after a coronavirus infection.

2006 ◽  
Vol 34 (6) ◽  
pp. 1334-1340 ◽  
Author(s):  
C. Culmsee ◽  
N. Plesnila

Sustained progression of neuronal cell death causes brain tissue loss and subsequent functional deficits following stroke or central nervous system trauma and in neurodegenerative diseases. Despite obvious differences in the pathology of these neurological disorders, the underlying delayed neuronal demise is carried out by a common biochemical cell death programme. Mitochondrial membrane permeabilization and subsequent release of apoptotic factors are key mechanisms during this process. Bcl-2 family proteins, e.g. the pro-apoptotic Bid, Bax or Bad and the antiapoptotic Bcl-2, Bcl-XL, play a crucial role in the regulation of this mitochondrial checkpoint in neurons. In particular, cleavage of cytosolic Bid and subsequent mitochondrial translocation have been detected in many paradigms of neuronal cell death related to acute or chronic neurodegeneration. The current review focuses on the emerging role of Bid as an integrating key regulator of the intrinsic death pathway that amplifies caspase-dependent and caspase-independent execution of neuronal apoptosis. Therefore pharmacological inhibition of Bid provides a promising therapeutic strategy in neurological diseases where programmed cell death is prominent.


2005 ◽  
pp. 146-156
Author(s):  
Mika Shimoji ◽  
Valina L. Dawson ◽  
Ted M. Dawson

2008 ◽  
Vol 3 (3) ◽  
pp. 309-323
Author(s):  
Salvatore J Cherra 3rd ◽  
Charleen T Chu

A central issue in developing therapies for neurodegenerative diseases involves understanding why adaptive responses to stress or injury fail to prevent synaptic dysfunction and neuronal cell death. Macroautophagy is a major, evolutionarily conserved response to nutrient and bioenergetic stresses, which has the capacity to remove aggregated proteins and damaged organelles such as mitochondria. This has prompted intense interest in autophagy-related therapies for Huntington’s, Alzheimer’s, Parkinson’s, stroke and other neurological diseases. However, excessive or imbalanced induction of autophagic recycling can actively contribute to neuronal atrophy, neurite degeneration and cell death. Oxidative-, aging- and disease-related increases in demand for autophagy, coupled with declining axonal trafficking, lysosomal degradation or biosynthetic efficiencies promote increased susceptibility to a harmful state of autophagic stress. A more complete understanding of dysfunction along the entire spectrum of autophagic recycling, from autophagosome formation through clearance and regeneration of new cellular components, is necessary to restore balance to the system, promote neuronal health and maximize therapeutic potentials.


Brain ◽  
2008 ◽  
Vol 131 (11) ◽  
pp. 3019-3033 ◽  
Author(s):  
Ik-Hyun Cho ◽  
Jinpyo Hong ◽  
Eun Cheng Suh ◽  
Jae Hwan Kim ◽  
Hyunkyoung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document