SIVgsn-99CM71 Vpu employs different amino acids to antagonize human and greater spot-nosed monkey BST-2

2021 ◽  
Author(s):  
Weitong Yao ◽  
Klaus Strebel ◽  
Shoji Yamaoka ◽  
Takeshi Yoshida

Viral protein U (Vpu) is an accessory protein encoded by human immunodeficiency virus type 1 (HIV-1) and certain simian immunodeficiency virus (SIV) strains. Some of these viruses were reported to use Vpu to overcome restriction by BST-2 of their natural hosts. Our own recent report revealed that Vpu of SIVgsn-99CM71 (SIVgsn71) antagonizes human BST-2 through two AxxxxxxxW motifs (A 22 W 30 and A 25 W 33 ) whereas antagonizing BST-2 of its natural host, greater spot-nosed monkey (GSN), involved only A 22 W 30 motif. Here we show that residues A 22 , A 25 , W 30 , and W 33 of SIVgsn71 Vpu are all essential to antagonize human BST-2, while, neither single mutation of A 22 nor W 30 affected the ability to antagonize GSN BST-2. Similar to A 18 , which is located in the middle of the A 14 xxxxxxxW 22 motif in HIV-1 NL4-3 Vpu and is essential to antagonize human BST-2, A 29 , located in the middle of the A 25 W 33 motif of SIVgsn71 Vpu was found to be necessary for antagonizing human but not GSN BST-2. Further mutational analyses revealed that residues L 21 and K 32 of SIVgsn71 Vpu were also essential for antagonizing human BST-2. On the other hand, the ability of SIVgsn71 Vpu to target GSN BST-2 was unaffected by single amino acid substitutions but required multiple mutations to render SIVgsn71 Vpu inactive against GSN BST-2. These results suggest additional requirements for SIVgsn71 Vpu antagonizing human BST-2, implying evolution of the bst-2 gene under strong selective pressure. Importance Genes related to survival against life-threating pathogens are important determinants of natural selection in animal evolution. For instance, BST-2, a protein showing broad-spectrum antiviral activity, shows polymorphisms entailing different phenotypes even among primate species, suggesting that the bst-2 gene of primates has been subject to strong selective pressure during evolution. At the same time, viruses readily adapt to these evolutionary changes. Thus, we found that Vpu of an SIVgsn isolate (SIVgsn-99CM71) can target BST-2 from humans as well as from its natural host thus potentially facilitating zoonosis. Here we mapped residues in SIVgsn71 Vpu potentially contributing to cross-species transmission. We found that the requirements for targeting human BST-2 are distinct from and more complex than those for targeting GSN BST-2. Our results suggest that the human bst-2 gene might have evolved to acquire more restrictive phenotype than GSN bst-2 against viral proteins after being derived from their common ancestor.

2016 ◽  
Vol 91 (4) ◽  
Author(s):  
Katherine S. Wetzel ◽  
Yanjie Yi ◽  
Sarah T. C. Elliott ◽  
Dino Romero ◽  
Beatrice Jacquelin ◽  
...  

ABSTRACT African green monkeys (AGM) and sooty mangabeys (SM) are well-studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to AIDS when infected with their species-specific viruses. Natural hosts of SIV express very low levels of the canonical entry coreceptor CCR5, and recent studies have shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells (PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway in vitro. Here we investigated the use of species-matched CXCR6 and other alternative coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4 and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent env genes from the plasma of two wild-infected sabaeus AGM and found similar patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5 were more efficient than other coreceptors when tested at limiting CD4/coreceptor levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited SIVagmSab replication in sabaeus PBMC and had a greater impact than did the CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infection. These data suggest a new paradigm for SIV infection of natural host species, whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other alternative coreceptors for entry, which may direct SIV toward CD4+ T cell subsets and anatomical sites that support viral replication without disrupting immune homeostasis and function. IMPORTANCE Natural hosts of SIV do not progress to AIDS, in stark contrast to pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-macaque infections. Identifying how natural hosts avoid immunodeficiency can elucidate key mechanisms of pathogenesis. It is known that despite high viral loads, natural hosts have a low frequency of CD4+ cells expressing the SIV coreceptor CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which infects vervet monkeys, our data suggest a unifying model whereby in natural hosts, in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to mediate infection may target SIV toward distinct cell populations that are able to support high-level viral replication without causing a loss of CD4+ T cell homeostasis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections.


2006 ◽  
Vol 80 (16) ◽  
pp. 7939-7951 ◽  
Author(s):  
Anjali Joshi ◽  
Kunio Nagashima ◽  
Eric O. Freed

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Gag precursor protein Pr55Gag drives the assembly and release of virus-like particles in the infected cell. The capsid (CA) domain of Gag plays an important role in these processes by promoting Gag-Gag interactions during assembly. The C-terminal domain (CTD) of CA contains two dileucine-like motifs (L189/L190 and I201/L202) implicated in regulating the localization of Gag to multivesicular bodies (MVBs). These dileucine-like motifs are located in the vicinity of the CTD dimer interface, a region of CA critical for Gag-Gag interactions during virus assembly and CA-CA interactions during core formation. To study the importance of the CA dileucine-like motifs in various aspects of HIV-1 replication, we introduced a series of mutations into these motifs in the context of a full-length, infectious HIV-1 molecular clone. CA mutants LL189,190AA and IL201,202AA were both severely impaired in virus particle production because of a variety of defects in the binding of Gag to membrane, Gag multimerization, and CA folding. In contrast to the model suggesting that the CA dileucine-like motifs regulate MVB targeting, the IL201,202AA mutation did not alter Gag localization to the MVB in either HeLa cells or macrophages. Revertants of single-amino-acid substitution mutants were obtained that no longer contained dileucine-like motifs but were nevertheless fully replication competent. The varied phenotypes of the mutants reported here provide novel insights into the interplay among Gag multimerization, membrane binding, virus assembly, CA dimerization, particle maturation, and virion infectivity.


2003 ◽  
Vol 77 (22) ◽  
pp. 12310-12318 ◽  
Author(s):  
Kevin J. Kunstman ◽  
Bridget Puffer ◽  
Bette T. Korber ◽  
Carla Kuiken ◽  
Una R. Smith ◽  
...  

ABSTRACT A chemokine receptor from the seven-transmembrane-domain G-protein-coupled receptor superfamily is an essential coreceptor for the cellular entry of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) strains. To investigate nonhuman primate CC-chemokine receptor 5 (CCR5) homologue structure and function, we amplified CCR5 DNA sequences from peripheral blood cells obtained from 24 representative species and subspecies of the primate suborders Prosimii (family Lemuridae) and Anthropoidea (families Cebidae, Callitrichidae, Cercopithecidae, Hylobatidae, and Pongidae) by PCR with primers flanking the coding region of the gene. Full-length CCR5 was inserted into pCDNA3.1, and multiple clones were sequenced to permit discrimination of both alleles. Compared to the human CCR5 sequence, the CCR5 sequences of the Lemuridae, Cebidae, and Cercopithecidae shared 87, 91 to 92, and 96 to 99% amino acid sequence homology, respectively. Amino acid substitutions tended to cluster in the amino and carboxy termini, the first transmembrane domain, and the second extracellular loop, with a pattern of species-specific changes that characterized CCR5 homologues from primates within a given family. At variance with humans, all primate species examined from the suborder Anthropoidea had amino acid substitutions at positions 13 (N to D) and 129 (V to I); the former change is critical for CD4-independent binding of SIV to CCR5. Within the Cebidae, Cercopithecidae, and Pongidae (including humans), CCR5 nucleotide similarities were 95.2 to 97.4, 98.0 to 99.5, and 98.3 to 99.3%, respectively. Despite this low genetic diversity, the phylogeny of the selected primate CCR5 homologue sequences agrees with present primate systematics, apart from some intermingling of species of the Cebidae and Cercopithecidae. Constructed HOS.CD4 cell lines expressing the entire CCR5 homologue protein from each of the Anthropoidea species and subspecies were tested for their ability to support HIV-1 and SIV entry and membrane fusion. Other than that of Cercopithecus pygerythrus, all CCR5 homologues tested were able to support both SIV and HIV-1 entry. Our results suggest that the shared structure and function of primate CCR5 homologue proteins would not impede the movement of primate immunodeficiency viruses between species.


2006 ◽  
Vol 80 (22) ◽  
pp. 10957-10971 ◽  
Author(s):  
Catherine S. Adamson ◽  
Sherimay D. Ablan ◽  
Ioana Boeras ◽  
Ritu Goila-Gaur ◽  
Ferri Soheilian ◽  
...  

ABSTRACT 3-O-(3′,3′-dimethylsuccinyl)betulinic acid (PA-457 or bevirimat) potently inhibits human immunodeficiency virus type 1 (HIV-1) maturation by blocking a late step in the Gag processing pathway, specifically the cleavage of SP1 from the C terminus of capsid (CA). To gain insights into the mechanism(s) by which HIV-1 could evolve resistance to PA-457 and to evaluate the likelihood of such resistance arising in PA-457-treated patients, we sought to identify and characterize a broad spectrum of HIV-1 variants capable of conferring resistance to this compound. Numerous independent rounds of selection repeatedly identified six single-amino-acid substitutions that independently confer PA-457 resistance: three at or near the C terminus of CA (CA-H226Y, -L231F, and -L231M) and three at the first and third residues of SP1 (SP1-A1V, -A3T, and -A3V). We determined that mutations CA-H226Y, CA-L231F, CA-L231M, and SP1-A1V do not impose a significant replication defect on HIV-1 in culture. In contrast, mutations SP1-A3V and -A3T severely impaired virus replication and inhibited virion core condensation. The replication defect imposed by SP1-A3V was reversed by a second-site compensatory mutation in CA (CA-G225S). Intriguingly, high concentrations of PA-457 enhanced the maturation of SP1 residue 3 mutants. The different phenotypes associated with mutations that confer PA-457 resistance suggest the existence of multiple mechanisms by which HIV-1 can evolve resistance to this maturation inhibitor. These findings have implications for the ongoing development of PA-457 to treat HIV-1 infection in vivo.


2000 ◽  
Vol 74 (2) ◽  
pp. 693-701 ◽  
Author(s):  
Joseph T. C. Shieh ◽  
Julio Martín ◽  
Gordon Baltuch ◽  
Michael H. Malim ◽  
Francisco González-Scarano

ABSTRACT Microglia are the main reservoir for human immunodeficiency virus type 1 (HIV-1) in the central nervous system (CNS), and multinucleated giant cells, the result of fusion of HIV-1-infected microglia and brain macrophages, are the neuropathologic hallmark of HIV dementia. One potential explanation for the formation of syncytia is viral adaptation for these CD4+ CNS cells. HIV-1BORI-15, a virus adapted to growth in microglia by sequential passage in vitro, mediates high levels of fusion and replicates more efficiently in microglia and monocyte-derived-macrophages than its unpassaged parent (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. Gonzalez-Scarano, J. Virol. 70:7654–7662, 1996). Since the interaction between the viral envelope glycoprotein and CD4 and the chemokine receptor mediates fusion and plays a key role in tropism, we have analyzed the HIV-1BORI-15 env as a fusogen and in recombinant and pseudotyped viruses. Its syncytium-forming phenotype is not the result of a switch in coreceptor use but rather of the HIV-1BORI-15envelope-mediated fusion of CD4+CCR5+ cells with greater efficiency than that of its parental strain, either by itself or in the context of a recombinant virus. Genetic analysis indicated that the syncytium-forming phenotype was due to four discrete amino acid differences in V1/V2, with a single-amino-acid change between the parent and the adapted virus (E153G) responsible for the majority of the effect. Additionally, HIV-1BORI-15 env-pseudotyped viruses were less sensitive to decreases in the levels of CD4 on transfected 293T cells, leading to the hypothesis that the differences in V1/V2 alter the interaction between this envelope and CD4 or CCR5, or both. In sum, the characterization of the envelope of HIV-1BORI-15, a highly fusogenic glycoprotein with genetic determinants in V1/V2, may lead to a better understanding of the relationship between HIV replication and syncytium formation in the CNS and of the importance of this region of gp120 in the interaction with CD4 and CCR5.


1998 ◽  
Vol 72 (10) ◽  
pp. 8420-8424 ◽  
Author(s):  
Peter J. King ◽  
W. Edward Robinson

ABSTRACT l-Chicoric acid is an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase in vitro and of HIV-1 replication in tissue culture. Following 3 months of selection in the presence of increasing concentrations of l-chicoric acid, HIV-1 was completely resistant to the compound. Introduction of the mutant integrase containing a single glycine-to-serine amino acid change at position 140 into the native, l-chicoric acid-sensitive virus demonstrated that this change was sufficient to confer resistance to l-chicoric acid. These results confirm through natural selection previous biochemical studies showing thatl-chicoric acid inhibits integrase and that the drug is likely to interact at residues near the catalytic triad in the integrase active site.


1998 ◽  
Vol 42 (6) ◽  
pp. 1340-1345 ◽  
Author(s):  
Tamio Fujiwara ◽  
Akihiko Sato ◽  
Mohamed El-Farrash ◽  
Shigeru Miki ◽  
Kenji Abe ◽  
...  

ABSTRACT S-1153 is a new imidazole compound that inhibits human immunodeficiency virus (HIV) type 1 (HIV-1) replication by acting as a nonnucleoside reverse transcriptase inhibitor (NNRTI). This compound inhibits replication of HIV-1 strains that are resistant to nucleoside and nonnucleoside reverse transcriptase inhibitors. S-1153 has a 50% effective concentration in the range of 0.3 to 7 ng/ml for strains with single amino acid substitutions that cause NNRTI resistance, including the Y181C mutant, and also has potent activity against clinical isolates. The emergence of S-1153-resistant variants is slower than that for nevirapine, and S-1153-resistant variants contained at least two amino acid substitutions, including F227L or L234I. S-1153-resistant variants are still sensitive to the nucleoside reverse transcriptase inhibitors zidovudine (AZT) and lamivudine. In a mouse and MT-4 (human T-cell line) in vivo HIV replication model, S-1153 and AZT administered orally showed a marked synergy for the inhibition of HIV-1 replication. S-1153 shows a significant accumulation in lymph nodes, where most HIV-1 infection is thought to occur. S-1153 may be an appropriate candidate for two- to three-drug combination therapy for HIV infection.


2006 ◽  
Vol 80 (4) ◽  
pp. 2051-2054 ◽  
Author(s):  
Sarah Sebastian ◽  
Elena Sokolskaja ◽  
Jeremy Luban

ABSTRACT Arsenic trioxide (As2O3) increased human immunodeficiency virus type 1 (HIV-1) infectivity when particular Homo sapiens and Cercopithecus aethiops cell lines were used as targets. Knockdown of human TRIM5α by RNA interference eliminated the As2O3 effect, demonstrating that the drug acts by modulating the activity of this retroviral restriction factor. In contrast, HIV-1 infectivity in target cell lines from other primate species (Cercopithecus tantalus, Macaca mulatta, and Aotus trivirgatus) was not increased by As2O3, despite the potent TRIM5-dependent HIV-1 restriction activity that these cells exhibit. To determine if As2O3 responsiveness is characteristic of particular TRIM5 orthologues and not others, TRIM5 cDNAs from these five primate species were transduced into cat fibroblasts, which lack endogenous HIV-1 restriction activity and, therefore, responsiveness to As2O3. In this context, the HIV-1 restriction activity conferred by all TRIM5 orthologues was largely eliminated by As2O3. The effect of As2O3 on HIV-1 restriction is thus shared by different TRIM5 orthologues but dependent on factors specific to the cell line in which TRIM5 is expressed.


2000 ◽  
Vol 11 (2) ◽  
pp. 141-155 ◽  
Author(s):  
G Campiani ◽  
M Fabbrini ◽  
E Morelli ◽  
V Nacci ◽  
G Greco ◽  
...  

New heterocyclic derivatives of ethylpyridylthiourea, quinoxalinylethylpyridylthiourea (QXPT) and analogues, inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity and prevented HIV-1 cytopathogenicity in T4 lymphocytes. Several of these novel non-nucleoside RT inhibitors, with a substituted pyrroloquinoxalinone heteroaromatic skeleton, showed inhibitory activity against wild-type RT as well as against mutant RTs containing the single amino acid substitutions L100I, K103N, V106A, Y181I and Y188L that was much greater than other non-nucleoside inhibitors such as nevirapine. Maximum potency in enzymatic assays was achieved with a fluoropyrroloquinoxaline skeleton linked to the ethylpyridylthiourea moiety (FQXPT). In cell-based assays on different cell lines and on human monocyte-macrophages, 6-FQXPT exhibited EC50 values in the nanomolar range, with a promising selectivity index. Moreover, 6-FQXPT showed synergistic antiviral activity with zidovudine.


Sign in / Sign up

Export Citation Format

Share Document