scholarly journals Antibodies directed towards neuraminidase N1 control disease in a mouse model of influenza

2017 ◽  
pp. JVI.01584-17 ◽  
Author(s):  
E.R. Job ◽  
M. Schotsaert ◽  
L.I. Ibañez ◽  
A. Smet ◽  
T. Ysenbaert ◽  
...  

There is increasing evidence to suggest that antibodies directed towards influenza A virus (IAV) neuraminidase (NA) are an important correlate of protection against influenza in humans. Moreover, the potential of NA-specific antibodies to provide broader protection than conventional hemagglutinin (HA) antibodies has been recognized. Herein, we describe the isolation of two monoclonal antibodies, N1-7D3 and N1-C4, directed towards the N1 NA. N1-7D3 binds to a conserved linear epitope in the membrane distal, carboxy-terminal part of the NA and reacted with the NA of seasonal H1N1 isolates ranging from 1977 till 2007 the 2009 H1N1pdm virus as well as A/Vietnam/1194/04 (H5N1). However, N1-7D3 lacked NA inhibition (NI) activity and the ability to protect BALB/c mice against a lethal challenge with a range of H1N1 viruses. Conversely, N1-C4 bound to a conformational epitope that is conserved between two influenza subtypes, the 2009 H1N1pdm and H5N1 IAV and displayed potentin vitroantiviral activity mediating both NI and plaque size-reduction. Moreover, N1-C4 could provide heterosubtypic protection in BALB/c mice against a lethal challenge with 2009 H1N1pdm or H5N1 virus. Glutamic acid residue 311 in the NA was found to be critical for the NA binding and antiviral activity of monoclonal antibody N1-C4. Our data provide further evidence on cross-protective epitopes within the N1 subtype and highlight the potential of NA as an important target for vaccine and therapeutic approaches.ImportanceInfluenza remains a world-wide burden to public health. As such the development of new and novel vaccines and therapeutics against influenza virus is crucial. Human challenge studies have recently highlighted the importance of antibodies directed towards the viral neuraminidase (NA) as an important correlate of reduced influenza-associated disease severity. Furthermore, there is evidence that anti-NA antibodies can provide broader protection than antibodies towards the viral hemagglutinin. Here we describe the isolation and detailed characterization of two N1 NA-specific monoclonal antibodies. One of these monoclonal antibodies broadly binds N1 type NAs and the second one displays NAI, in vitro and in vivo anti-viral activity against 2009 H1N1pdm and H5N1 influenza viruses. These two new anti-NA antibodies contribute to our understanding of the antigenic properties and protective potential of the influenza NA antigen.

2005 ◽  
Vol 86 (10) ◽  
pp. 2817-2821 ◽  
Author(s):  
Ana M. Falcón ◽  
Ana Fernandez-Sesma ◽  
Yurie Nakaya ◽  
Thomas M. Moran ◽  
Juan Ortín ◽  
...  

It was previously shown that two mutant influenza A viruses expressing C-terminally truncated forms of the NS1 protein (NS1-81 and NS1-110) were temperature sensitive in vitro. These viruses contain HA, NA and M genes derived from influenza A/WSN/33 H1N1 virus (mouse-adapted), and the remaining five genes from human influenza A/Victoria/3/75 virus. Mice intranasally infected with the NS1 mutant viruses showed undetectable levels of virus in lungs at day 3, whereas those infected with the NS1 wild-type control virus still had detectable levels of virus at this time. Nevertheless, the temperature-sensitive mutant viruses induced specific cellular and humoral immune responses similar to those induced by the wild-type virus. Mice immunized with the NS1 mutant viruses were protected against a lethal challenge with influenza A/WSN/33 virus. These results indicate that truncations in the NS1 protein resulting in temperature-sensitive phenotypes in vitro correlate with attenuation in vivo without compromising viral immunogenicity, an ideal characteristic for live attenuated viral vaccines.


2011 ◽  
Vol 18 (7) ◽  
pp. 1083-1090 ◽  
Author(s):  
Michael G. Wallach ◽  
Richard J. Webby ◽  
Fakhrul Islam ◽  
Stephen Walkden-Brown ◽  
Eva Emmoth ◽  
...  

ABSTRACTInfluenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic. In this study, we raised IgY antibodies against H1N1, H3N2, and H5N1 influenza viruses. We demonstrated that, using whole inactivated viruses alone and in combination to immunize hens, we were able to induce a high level of anti-influenza virus IgY in the sera and eggs, which lasted for at least 2 months after two immunizations. Furthermore, we found that by use ofin vitroassays to test for the ability of IgY to inhibit hemagglutination (HI test) and virus infectivity (serum neutralization test), IgYs inhibited the homologous as well as in some cases heterologous clades and strains of viruses. Using anin vivomouse model system, we found that, when administered intranasally 1 h prior to infection, IgY to H5N1 protected 100% of the mice against lethal challenge with H5N1. Of particular interest was the finding that IgY to H5N1 cross-protected against A/Puerto Rico/8/34 (H1N1) bothin vitroandin vivo. Based on our results, we conclude that anti-influenza virus IgY can be used to help prevent influenza virus infection.


2009 ◽  
Vol 83 (24) ◽  
pp. 13015-13018 ◽  
Author(s):  
Kyoko Shinya ◽  
Akiko Makino ◽  
Makoto Ozawa ◽  
Jin Hyun Kim ◽  
Yuko Sakai-Tagawa ◽  
...  

ABSTRACT Amino acids at positions 627 and 701 in the PB2 protein (PB2-627 and PB2-701, respectively) of avian influenza A viruses affect virus replication in some mammalian cells. Highly pathogenic H5N1 influenza viruses possessing mammalian-type PB2-627 were detected during the Qinghai Lake outbreak in 2005 and spread to Europe and Africa. Via a database search, we found a high rate of viral isolates from Ratitae, including ostrich, possessing mammalian-type PB2-627 or -701. Here, we report that H5N1 avian influenza viruses possessing mammalian-type amino acids in PB2-627 or -701 are selected during replication in ostrich cells in vitro and in vivo.


2006 ◽  
Vol 80 (24) ◽  
pp. 11960-11967 ◽  
Author(s):  
Jeremy C. Jones ◽  
Elizabeth A. Turpin ◽  
Hermann Bultmann ◽  
Curtis R. Brandt ◽  
Stacey Schultz-Cherry

ABSTRACT Influenza A viruses continue to cause widespread morbidity and mortality. There is an added concern that the highly pathogenic H5N1 influenza A viruses, currently found throughout many parts of the world, represent a serious public health threat and may result in a pandemic. Intervention strategies to halt an influenza epidemic or pandemic are a high priority, with an emphasis on vaccines and antiviral drugs. In these studies, we demonstrate that a 20-amino-acid peptide (EB, for entry blocker) derived from the signal sequence of fibroblast growth factor 4 exhibits broad-spectrum antiviral activity against influenza viruses including the H5N1 subtype in vitro. The EB peptide was protective in vivo, even when administered postinfection. Mechanistically, the EB peptide inhibits the attachment to the cellular receptor, preventing infection. Further studies demonstrated that the EB peptide specifically binds to the viral hemagglutinin protein. This novel peptide has potential value as a reagent to study virus attachment and as a future therapeutic.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Giuseppe Sautto ◽  
Nicasio Mancini ◽  
Giacomo Gorini ◽  
Massimo Clementi ◽  
Roberto Burioni

More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminaryin vitroandin vivomodels of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.


2014 ◽  
Vol 5 ◽  
Author(s):  
Emanuel Haasbach ◽  
Carmen Hartmayer ◽  
Alice Hettler ◽  
Alicja Sarnecka ◽  
Ulrich Wulle ◽  
...  

2016 ◽  
Vol 185 ◽  
pp. 327-340 ◽  
Author(s):  
Amin Haghani ◽  
Parvaneh Mehrbod ◽  
Nikoo Safi ◽  
Nur Ain Aminuddin ◽  
Azadeh Bahadoran ◽  
...  

2019 ◽  
Vol 20 (24) ◽  
pp. 6261
Author(s):  
Min Guo ◽  
Jiawei Ni ◽  
Jie Yu ◽  
Jing Jin ◽  
Lingman Ma ◽  
...  

The currently available drugs against influenza A virus primarily target neuraminidase (NA) or the matrix protein 2 (M2) ion channel. The emergence of drug-resistant viruses requires the development of new antiviral chemicals. Our study applied a cell-based approach to evaluate the antiviral activity of a series of newly synthesized benzoic acid derivatives, and 4-(2,2-Bis(hydroxymethyl)-5-oxopyrrolidin-l-yl)-3-(5-cyclohexyl-4H-1,2,4-triazol-3-yl)amino). benzoic acid, termed NC-5, was found to possess antiviral activity. NC-5 inhibited influenza A viruses A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and oseltamivir-resistant mutant A/FM/1/47-H275Y (H1N1-H275Y) in a dose-dependent manner. The 50% effective concentrations (EC50) for H1N1 and H1N1-H275Y were 33.6 μM and 32.8 μM, respectively, which showed that NC-5 had a great advantage over oseltamivir in drug-resistant virus infections. The 50% cytotoxic concentration (CC50) of NC-5 was greater than 640 μM. Orally administered NC-5 protected mice infected with H1N1 and H1N1-H275Y, conferring 80% and 60% survival at 100 mg/kg/d, reducing body weight loss, and alleviating virus-induced lung injury. NC-5 could suppress NP and M1 protein expression levels during the late stages of viral biosynthesis and inhibit NA activity, which may influence virus release. Our study proved that NC-5 has potent anti-influenza activity in vivo and in vitro, meaning that it could be regarded as a promising drug candidate to treat infection with influenza viruses, including oseltamivir-resistant viruses.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1171
Author(s):  
Yaron Drori ◽  
Jasmine Jacob-Hirsch ◽  
Rakefet Pando ◽  
Aharona Glatman-Freedman ◽  
Nehemya Friedman ◽  
...  

Influenza viruses and respiratory syncytial virus (RSV) are respiratory viruses that primarily circulate worldwide during the autumn and winter seasons. Seasonal surveillance has shown that RSV infection generally precedes influenza. However, in the last four winter seasons (2016–2020) an overlap of the morbidity peaks of both viruses was observed in Israel, and was paralleled by significantly lower RSV infection rates. To investigate whether the influenza A virus inhibits RSV, human cervical carcinoma (HEp2) cells or mice were co-infected with influenza A and RSV. Influenza A inhibited RSV growth, both in vitro and in vivo. Mass spectrometry analysis of mouse lungs infected with influenza A identified a two-wave pattern of protein expression upregulation, which included members of the interferon-induced protein with the tetratricopeptide (IFITs) family. Interestingly, in the second wave, influenza A viruses were no longer detectable in mouse lungs. In addition, knockdown and overexpression of IFITs in HEp2 cells affected RSV multiplicity. In conclusion, influenza A infection inhibits RSV infectivity via upregulation of IFIT proteins in a two-wave modality. Understanding the immune system involvement in the interaction between influenza A and RSV viruses will contribute to the development of future treatment strategies against these viruses.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Jessica A. Belser ◽  
Xiangjie Sun ◽  
Nicole Brock ◽  
Claudia Pappas ◽  
Joanna A. Pulit-Penaloza ◽  
...  

ABSTRACT Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses. IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.


Sign in / Sign up

Export Citation Format

Share Document