scholarly journals The Nucleoprotein Is Required for Lymphocytic Choriomeningitis Virus-Based Vaccine Vector Immunogenicity

2015 ◽  
Vol 89 (22) ◽  
pp. 11734-11738 ◽  
Author(s):  
Stephanie Darbre ◽  
Susan Johnson ◽  
Sandra Kallert ◽  
Paul-Henri Lambert ◽  
Claire-Anne Siegrist ◽  
...  

Recombinant glycoprotein-deficient lymphocytic choriomeningitis virus-based vaccine vectors (rLCMV/ΔGP) are potent CD8+T cell inducers. To investigate the underlying molecular requirements, we generated a nucleoprotein-deficient vector counterpart (rLCMV/ΔNP). NP but not GP is a minimaltrans-acting factor for viral transcription and genome replication. We found that, unlike rLCMV/ΔGP, rLCMV/ΔNP failed to elicit detectable CD8+T cell responses unless NP wastranscomplemented in a transgenic host. Hence, NP-dependent intracellular gene expression is essential for LCMV vector immunogenicity.

2008 ◽  
Vol 82 (23) ◽  
pp. 11734-11741 ◽  
Author(s):  
Courtney Dow ◽  
Carla Oseroff ◽  
Bjoern Peters ◽  
Courtney Nance-Sotelo ◽  
John Sidney ◽  
...  

ABSTRACT Activation of CD4+ T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4+ T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2d. This is quite disparate to the H-2b setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2d or whether additional CD4+ T-cell epitopes could be identified in the setting of the H-2b background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4+ T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4+ epitopes, four of them also stimulate CD8+ T cells in a statistically significant manner. Furthermore, we assessed these CD4+ T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4+ and CD8+ T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.


Virology ◽  
1998 ◽  
Vol 240 (1) ◽  
pp. 158-167 ◽  
Author(s):  
Robbert G. van der Most ◽  
Kaja Murali-Krishna ◽  
J.Lindsay Whitton ◽  
Carla Oseroff ◽  
Jeff Alexander ◽  
...  

2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Pedro Alves-Peixoto ◽  
Maria Férez ◽  
Cory J. Knudson ◽  
Carolina R. Melo-Silva ◽  
Colby Stotesbury ◽  
...  

ABSTRACT It is well established that chronic viral infections can cause immune suppression, resulting in increased susceptibility to other infectious diseases. However, the effects of chronic viral infection on T-cell responses and vaccination against highly pathogenic viruses are not well understood. We have recently shown that C57BL/6 (B6) mice lose their natural resistance to wild-type (WT) ectromelia virus (ECTV) when chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13). Here we compared the T-cell response to ECTV in previously immunologically naive mice that were chronically infected with CL13 or that were convalescent from acute infection with the Armstrong (Arm) strain of LCMV. Our results show that mice that were chronically infected with CL13 but not those that had recovered from Arm infection have highly defective ECTV-specific CD8+ and CD4+ T-cell responses to WT ECTV. These defects are at least partly due to the chronic infection environment. In contrast to mice infected with WT ECTV, mice chronically infected with CL13 survived without signs of disease when infected with ECTV-Δ036, a mutant ECTV strain that is highly attenuated. Strikingly, mice chronically infected with CL13 mounted a strong CD8+ T-cell response to ECTV-Δ036 and survived without signs of disease after a subsequent challenge with WT ECTV. Our work suggests that enhanced susceptibility to acute viral infections in chronically infected individuals can be partly due to poor T-cell responses but that sufficient T-cell function can be recovered and resistance to acute infection can be restored by immunization with highly attenuated vaccines. IMPORTANCE Chronic viral infections may result in immunosuppression and enhanced susceptibility to infections with other pathogens. For example, we have recently shown that mice chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) are highly susceptible to mousepox, a disease that is caused by ectromelia virus and that is the mouse homolog of human smallpox. Here we show chronic CL13 infection severely disrupts the expansion, proliferation, activation, and cytotoxicity of T cells in response due at least in part to the suppressive effects of the chronic infection milieu. Notably, despite this profound immunodeficiency, mice chronically infected with CL13 could be protected by vaccination with a highly attenuated variant of ECTV. These results demonstrate that protective vaccination of immunosuppressed individuals is possible, provided that proper immunization tools are used.


2001 ◽  
Vol 75 (21) ◽  
pp. 10421-10430 ◽  
Author(s):  
Fernando Rodriguez ◽  
Stephanie Harkins ◽  
Jeffrey M. Redwine ◽  
Jose M. de Pereda ◽  
J. Lindsay Whitton

ABSTRACT Our previous studies have shown that targeting DNA vaccine-encoded major histocompatibility complex class I epitopes to the proteasome enhanced CD8+ T-cell induction and protection against lymphocytic choriomeningitis virus (LCMV) challenge. Here, we expand these studies to evaluate CD4+ T-cell responses induced by DNA immunization and describe a system for targeting proteins and minigenes to lysosomes. Full-length proteins can be targeted to the lysosomal compartment by covalent attachment to the 20-amino-acid C-terminal tail of lysosomal integral membrane protein-II (LIMP-II). Using minigenes encoding defined T-helper epitopes from lymphocytic choriomeningitis virus, we show that the CD4+T-cell response induced by the NP309–328 epitope of LCMV was greatly enhanced by addition of the LIMP-II tail. However, the immunological consequence of lysosomal targeting is not invariably positive; the CD4+ T-cell response induced by the GP61–80 epitope was almost abolished when attached to the LIMP-II tail. We identify the mechanism which underlies this marked difference in outcome. The GP61–80 epitope is highly susceptible to cleavage by cathepsin D, an aspartic endopeptidase found almost exclusively in lysosomes. We show, using mass spectrometry, that the GP61–80 peptide is cleaved between residues F74 and K75 and that this destroys its ability to stimulate virus-specific CD4+ T cells. Thus, the immunological result of lysosomal targeting varies, depending upon the primary sequence of the encoded antigen. We analyze the effects of CD4+ T-cell priming on the virus-specific antibody and CD8+ T-cell responses which are mounted after virus infection and show that neither response appears to be accelerated or enhanced. Finally, we evaluate the protective benefits of CD4+ T-cell vaccination in the LCMV model system; in contrast to DNA vaccine-induced CD8+ T cells, which can confer solid protection against LCMV challenge, DNA vaccine-mediated priming of CD4+ T cells does not appear to enhance the vaccinee's ability to combat viral challenge.


Sign in / Sign up

Export Citation Format

Share Document