intracellular cytokine staining
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 79)

H-INDEX

34
(FIVE YEARS 4)

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6270
Author(s):  
Robert C. Mould ◽  
Jacob P. van Vloten ◽  
Amanda W. K. AuYeung ◽  
Scott R. Walsh ◽  
Jondavid de Jong ◽  
...  

Survivin is a member of the inhibitor of apoptosis family of proteins and has been reported to be highly expressed in a variety of cancer types, making it a high priority target for cancer vaccination. We previously described a heterologous prime-boost strategy using a replication-deficient adenovirus, followed by an oncolytic rhabdovirus that generates unprecedented antigen-specific T cell responses. We engineered each vector to express a mutated version of full-length murine survivin. We first sought to uncover the complete epitope map for survivin-specific T cell responses in C57BL/6 and BALB/c mice by flow cytometry. However, no T cell responses were detected by intracellular cytokine staining after re-stimulation of T cells. Survivin has been found to be expressed by activated T cells, which could theoretically cause T cell-mediated killing of activated T cells, known as fratricide. We were unable to recapitulate this phenomenon in experiments. Interestingly, the inactivated survivin construct has been previously shown to directly kill tumor cells in vitro. However, there was no evidence in our models of induction of death in antigen-presenting cells due to treatment with a survivin-expressing vector. Using the same recombinant virus-vectored prime-boost strategy targeting the poorly immunogenic enhanced green fluorescent protein proved to be a highly sensitive method for mapping T cell epitopes, particularly in the context of identifying novel epitopes recognized by CD4+ T cells. Overall, these results suggested there may be unusually robust tolerance to survivin in commonly used mouse strains that cannot be broken, even when using a particularly potent vaccination platform. However, the vaccination method shows great promise as a strategy for identifying novel and subdominant T cell epitopes.


2021 ◽  
Author(s):  
Rachel A. Bender Ignacio ◽  
Jessica Long ◽  
Aparajita Saha ◽  
Felicia K. Nguyen ◽  
Lara Joudeh ◽  
...  

AbstractBackgroundAlthough immune activation is associated with HIV acquisition, the nature of inflammatory profiles that increase HIV risk, which may include responses to M. tuberculosis (Mtb) infection, are not well characterized.MethodsWe conducted a nested case-control study within the Step MRKAd5 HIV-1 vaccine study. PBMCs from the last HIV-negative sample from incident HIV cases and controls who did not acquire HIV were stimulated with Mtb-specific antigens (ESAT-6/CFP-10) and analyzed by flow cytometry with intracellular cytokine staining.Combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS) determined overall Mtb-antigen-specific T cell activation. We measured inflammatory profiles with five Correlates of TB Risk (CoR) peripheral blood transcriptomic signatures. Conditional logistic regression analyses, adjusted for known predictors of HIV acquisition, were employed to assess whether either cellular markers of TB-associated immune activation or transcriptomic predictors of TB disease states were associated with HIV acquisition.ResultsAmong 465 participants, latent Mtb infection (LTBI) prevalence (21.5% controls vs 19.1% cases, p=0.51) and Mtb antigen-specific polyfunctional CD4+ T cell COMPASS scores (aOR 0.96, 95% CI 0.77, 1.20) were not higher in those who acquired HIV. Two CoR signatures, Sweeney3 (aOR 1.38 (1.07, 1.78) per SD change) and RESPONSE5 (0.76 (0.60, 0.95)), were associated with HIV acquisition in multivariable analysis. The Sweeney3 signature best predicted odds of acquiring HIV in unadjusted and adjusted analyses, including when restricted to LTBI-negative participants.ConclusionsLTBI and Mtb polyfunctional antigen-specific CD4+ T cell immune activation were not identified as risk factors for HIV acquisition, but transcriptomic analyses demonstrated that two CoR signatures predicted HIV risk after adjustment for known behavioral and clinical risk factors. CoR signatures can demonstrate host gene expression associated with HIV acquisition, but the observed effects are likely not mediated through Mtb infection.


2021 ◽  
Vol 9 (12) ◽  
pp. e003439
Author(s):  
Jonas Bochem ◽  
Henning Zelba ◽  
Janine Spreuer ◽  
Teresa Amaral ◽  
Andrea Gaissler ◽  
...  

BackgroundAnti-programmed cell death protein 1 (PD-1) antibodies are now routinely administered for metastatic melanoma and for increasing numbers of other cancers, but still only a fraction of patients respond. Better understanding of the modes of action and predictive biomarkers for clinical outcome is urgently required. Cancer rejection is mostly T cell-mediated. We previously showed that the presence of NY-ESO-1-reactive and/or Melan-A-reactive T cells in the blood correlated with prolonged overall survival (OS) of patients with melanoma with a heterogeneous treatment background. Here, we investigated whether such reactive T cells can also be informative for clinical outcomes in metastatic melanoma under PD-1 immune-checkpoint blockade (ICB).MethodsPeripheral blood T cell stimulation by NY-ESO-1 and Melan-A overlapping peptide libraries was assessed before and during ICB in two independent cohorts of a total of 111 patients with stage IV melanoma. In certain cases, tumor-infiltrating lymphocytes could also be assessed for such responses. These were characterized using intracellular cytokine staining for interferon gamma (IFN-γ), tumor negrosis factor (TNF) and CD107a. Digital pathology analysis was performed to quantify NY-ESO-1 and Melan-A expression by tumors. Endpoints were OS and progression-free survival (PFS).ResultsThe initial presence in the circulation of NY-ESO-1- or Melan-A-reactive T cells which became no longer detectable during ICB correlated with validated, prolonged PFS (HR:0.1; p>0.0001) and OS (HR:0.2; p=0.021). An evaluation of melanoma tissue from selected cases suggested a correlation between tumor-resident NY-ESO-1- and Melan-A-reactive T cells and disease control, supporting the notion of a therapy-associated sequestration of cells from the periphery to the tumor predominantly in those patients benefitting from ICB.ConclusionsOur findings suggest a PD-1 blockade-dependent infiltration of melanoma-reactive T cells from the periphery into the tumor and imply that this seminally contributes to effective treatment.


2021 ◽  
pp. 129-145
Author(s):  
Carlene Petes ◽  
Stephen K. H. Li ◽  
Shariq Mujib ◽  
Michelle M. Poulin ◽  
Noah Saederup ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi54-vi55
Author(s):  
Simone Maarup ◽  
Signe Skadborg ◽  
Annie Borch ◽  
Arianna Draghi ◽  
Benedikte Hasselbalch ◽  
...  

Abstract INTRODUCTION Glioblastoma is an aggressive brain tumor with a median survival of 14.6 months. We have no standard treatment for relapse and known options have limited effect. Novel treatments are necessary to improve survival and quality of life. METHODS We present our trial; phase II open label, two-armed translational study of Nivolumab and Bevacizumab for recurrent GBM, who have failed Stupp’s regimen. Patients are included in two arms depending on the possibility of salvage neurosurgical resection. Both arms receive Nivolumab and Bevacizumab administrated every second weekend, and the surgical arm also receive Nivolumab 7 days prior surgery. Forty-four patients were included by January 2021; 20 in each arm (four screen-failures). In the surgical arm, 20 fresh tumor samples as well as paired tissue from primary tumor were available. Tumor infiltrating lymphocytes (TILs) and tumor digest were produced in vitro from recurrent settings. Young TILs were expanded from fresh tumor fragments after minimal-culture, whereas rapidly expanded TILs (REP TILs) were obtained after massive expansion. By intracellular cytokine staining, we investigated the TIL reactivity after exposure to autologous tumor digest in order to evaluate whether the TILs were tumor-reactive, non-reactive or bystanders. RNA and whole exome sequencing were available before and after treatment. RESULTS Material from 19 patients was analyzed (one out of the 20 collected biopsies was limited in size, therefore no tumor digest could be produced). Four out of 19 TIL samples showed tumor reactivity after exposure to the autologous tumor digest. Tumor reactivity was ranged between 1,2 to 13,6 tox% in CD8+ TILs and between 2,8 to 10,9 tox% in CD4+ TILs. By flowcytometry we found, IgG4+ CD3+ TILS from tumor biopsies, meaning that Nivolumab were found in the brain. Currently controls are included to evaluate these results. CONCLUSIONS Updated results will be presented at SNO.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi95-vi95
Author(s):  
Malte Mohme ◽  
Cecile Maire ◽  
Alessandra Rünger ◽  
Laura Glau ◽  
Eva Tolosa ◽  
...  

Abstract Cancer is a systemic disease. Due to the exceedingly rare occurrence of metastasis of cerebral glioma, systemic alterations have, however, not been considered to play a major role in disease progression of glioma. CD4+ T helper (TH) cells orchestrate the adaptive immune response in an antigen-specific, cytokine mediated manner. The aim of our study was to investigate how far cerebral glioma impacts the systemic CD4+ immune repertoire. We therefore analyzed the peripheral blood CD4+ TH cell phenotype and cytokine production in 100 patients with IDHwt, 30 IDHmut and 16 IDHmut 1p19q co-deleted gliomas in comparison with age-matched healthy donors (HD). We found a significant skewing of the peripheral phenotype in IDHwt glioma patients, showing a TH1 expansion and reduced numbers of T follicular helper cells (TFH), TH1* and mucosa associated invariant T (MAIT) cells, while TH2 and TH17 percentages remained stable compared to IDHmut and HD. Interestingly, although TH1 cells were dominant in IDHwt patients, intracellular cytokine staining showed a distinct reduction of IFNg and TNFa production after in vitro stimulation, while IL-4 was significantly increased compared to HD. No alterations between all groups were observed in IL-2, IL-10 or IL-17 production. Profiling of metabolic surface markers further revealed three distinct groups of CD4+ T cells which are altered in IDHwt patients, indicating a metabolic shift in the CD4+ repertoire compared to HD. Taken together, our results show a CD4+ TH cell type specific skewing of the peripheral immune repertoire in patients with IDHwt gliomas. Our data highlights the importance of considering malignant glioma as a systemic disease that fundamentally alters the immune repertoire in affected patients.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A205-A205
Author(s):  
Eleni Kotsiou ◽  
Joe Robinson ◽  
Amber Rogers ◽  
Daisy Melandri ◽  
Amy Baker ◽  
...  

BackgroundAdoptive transfer of ex-vivo expanded tumor-infiltrating lymphocytes (TIL) has shown promise in the clinic. However, the non-specific expansion of TIL and the lack of understanding of the active component of TIL has resulted in poor correlation between clinical response and dose as well as poor understanding of response and resistance mechanisms. The VELOSTM manufacturing process generates a precision and personalized treatment modality by targeting clonal neoantigens with the incorporation of an antigen-specific expansion step to enrich the product for these specificities. Achilles has developed a second generation manufacturing process (VELOSTM Process 2) to boost the neoantigen-reactive cell dose while maintaining key qualitative features associated with function. Here we report the in-depth characterization of clonal neoantigen-reactive T cells (cNeT) products expanded using the two VELOSTM processes.MethodsMatched tumors and peripheral blood from patients undergoing routine surgery were obtained from patients with primary NSCLC or metastatic melanoma (NCT03517917). TIL were expanded from tumor fragments and peptide pools corresponding to the clonal mutations identified using the PELEUSTM bioinformatics platform were synthesized. cNeT were expanded by co-culture of TIL with peptide-pulsed autologous dendritic cells, with an optimized cytokine cocktail and co-stimulation for Process 2. Neoantigen reactivity was assessed using our proprietary potency assay with peptide pool re-challenge followed by intracellular cytokine staining. Single peptide reactivities were identified using ELISPOT and flow cytometric analysis for in-depth phenotyping of cNeT was performed.ResultsCD3+ T cells displayed higher fold expansion in Process 2 (median 77.4) compared to Process 1 (median 3.8)(n=5). Both processes showed similar CD3+ T cell content (median Process 1=91.3%, Process 2=96.9% n=5) and contained both CD4+ and CD8+ T cells showing reactivity to clonal neoantigens. Proportion of cells responding to neoantigen re-challenge was similar across both processes (median Process 1=19.9% and Process 2=18.2%) leading to higher reactive dose when coupled with higher T cell doses in Process 2. Phenotypically T cells were predominantly effector memory for both processes and Process 2 had lower frequencies of terminally differentiated T cells.ConclusionsAchilles’ proprietary potency assay enables the optimization of new processes that deliver high cNeT doses to patients by detecting the active drug component. We have generated proof of concept data that supports the transfer of the VELOSTM Process 2 to clinical manufacture for two first-in-human studies for the treatment of solid cancers.Ethics ApprovalThe samples for the study were collected under an ethically approved protocol (NCT03517917)


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A224-A224
Author(s):  
Michael Maloney ◽  
Emrah Ilker Ozay ◽  
Amy Merino ◽  
Andrea Silva ◽  
Amber Martin ◽  
...  

BackgroundAntigen-specific CD8+ T cells are critical components of mounting an effective immune response against tumors. Generation of antigen-specific T cells require interactions with multiple signals produced by antigen presenting cells (APCs). These signals are comprised of three components: (signal 1) the peptide-MHC complex binding to the T cell receptor, (signal 2) costimulatory molecules on the surface of APCs, and (signal 3) inflammatory cytokines binding to cognate receptors on T cells.MethodsTo engineer all major cell subsets of human peripheral blood mononuclear cells (PBMCs) to become enhanced APCs (eAPCs), we used Cell Squeeze® technology to deliver multiple mRNA encoding for non-self-antigens (signal 1), CD86 (signal 2), and/or membrane-bound cytokines (signal 3). The signal 3 molecules, membrane-bound IL-12 (mbIL-12) and membrane-bound IL-2 (mbIL-2), are chimeric proteins designed to increase the localized concentration of the cytokines and limit off-target effects. Flow cytometry and western blots were used to confirm the translation of each of the delivered mRNA. The increased capabilities of these enhanced APCs were assessed in vitro by culturing the APCs with antigen-specific T cells for multiple days before measuring the functionality of antigen-specific T cells via intracellular cytokine staining or ELISA.ResultsWe demonstrate that Cell Squeeze® processing of PBMCs with mRNA encoding for signals 1, 2, and 3 results in highly effective enhanced APCs in vitro. In a single squeeze process, efficient delivery and translation of up to five mRNA is observed in all major PBMC cell subsets including T cells, B cells, NK cells, and monocytes. Once translated, the chimeric mbIL-2 and mbIL-12 can bind to their cognate receptors and exhibit minimal shedding from the surface. We show that enhanced APCs can present antigenic peptides derived from mRNA encoding for a foreign antigen on MHC complexes in an HLA agnostic manner, which drives antigen-specific T cell responses. The addition of CD86, mbIL-2, and mbIL-12 further enhance the activation and potency of antigen-specific T cells, as measured by an increase in the secretion of inflammatory cytokines upon restimulation (i.e. IFNγ).ConclusionsCell squeezing of human PBMCs with mRNA encoding for signals 1, 2, and 3 has the potential to generate enhanced APCs that drive robust CD8+ T cell response against multiple targets across several disease areas. The versatility of the Cell Squeeze® technology potentially enables rapid exchange of mRNA to other antigens or T cell activation signals.


2021 ◽  
Vol 11 (4) ◽  
pp. 777-783
Author(s):  
R. G. Sakhabeev ◽  
D. S. Polyakov ◽  
A. D. Goshina ◽  
A. A. Vishnya ◽  
I. V. Kudryavtsev ◽  
...  

The current study was a part of the project on generating viral particle traps occurring due to covalent immobilization on the interface of recombinant virus-specific polymer-based nano- and microparticles. It is assumed that protein-particle conjugates could be able to bind virions followed by engulfment by immune cells. The study was aimed to examine the effect of polylactic acid (PLA) and PLA block-copolymer with polyethylene glycol (PLA-PEG)-based micro- and nanoparticles on the cellular immune response against polymeric particle-bound antigen. Materials and methods. A recombinant chimeric protein beta-2-microglobulin — green fluorescent protein (β2M-sfGFP) was obtained by affine chromatography. The recombinant protein was immobilized onto the polymer particles, which were further used for mice immunization. Female F1 hybrid mice (CBA x C57BL) in experimental and control groups consisted of 4–6-month-old 15 animals (weighted 20–25 g). Intracellular cytokine staining was used to evaluate the cellular immune response. Results and discussion. It was shown that the nanoparticles of PLA block-copolymer with polyethylene glycol (PLA-PEG) were able to bind 10 microgram protein per 1 mg polymer. The polylactic acid nanoparticles were able to bind 2,3 microgram protein per 1 mg polymer. In experiment, mice in group 1 were immunized with 100 nm PLA-PEG particle-β2M-sfGFP conjugate, in group 2 — with same particles together with soluble β2M-sfGFP. In group 3, mice were immunized with 1400 nm PLA particles-β2M-sfGFP conjugate, and in group 4 — with same particles together with soluble protein. The spleens isolated 2 weeks after the four-time intraperitoneal immunization. Comparison of immune response between groups was assessed by nonparametric Kruskal–Wallis criterion with Tukey correction. It was shown that the number of antigen-specific CD4+ T cells produced to model protein was significantly higher after immunization with particle-β2M-sfGFP conjugate, as compared to control groups, wherein immunization was performed with a mixture of protein and unmodified particles (p < 0.001). It was found that the number of antigen-specific CD8+ T cells formed against β2m-sfGFP did not differ between all groups examined.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009842
Author(s):  
Janna Heide ◽  
Sophia Schulte ◽  
Matin Kohsar ◽  
Thomas Theo Brehm ◽  
Marissa Herrmann ◽  
...  

The aim of this study was to define the breadth and specificity of dominant SARS-CoV-2-specific T cell epitopes using a comprehensive set of 135 overlapping 15-mer peptides covering the SARS-CoV-2 envelope (E), membrane (M) and nucleoprotein (N) in a cohort of 34 individuals with acute (n = 10) and resolved (n = 24) COVID-19. Following short-term virus-specific in vitro cultivation, the single peptide-specific CD4+ T cell response of each patient was screened using enzyme linked immuno spot assay (ELISpot) and confirmed by single-peptide intracellular cytokine staining (ICS) for interferon-γ (IFN-γ) production. 97% (n = 33) of patients elicited one or more N, M or E-specific CD4+ T cell responses and each patient targeted on average 21.7 (range 0–79) peptide specificities. Overall, we identified 10 N, M or E-specific peptides that showed a response frequency of more than 36% and five of them showed high binding affinity to multiple HLA class II binders in subsequent in vitro HLA binding assays. Three peptides elicited CD4+ T cell responses in more than 55% of all patients, namely Mem_P30 (aa146-160), Mem_P36 (aa176-190), both located within the M protein, and Ncl_P18 (aa86-100) located within the N protein. These peptides were further defined in terms of length and HLA restriction. Based on this epitope and restriction data we developed a novel DRB*11 tetramer (Mem_aa145-164) and examined the ex vivo phenotype of SARS-CoV-2-specific CD4+ T cells in one patient. This detailed characterization of single T cell peptide responses demonstrates that SARS-CoV-2 infection universally primes a broad T cell response directed against multiple specificities located within the N, M and E structural protein.


Sign in / Sign up

Export Citation Format

Share Document