scholarly journals Biarsenical Labeling of Vesicular Stomatitis Virus Encoding Tetracysteine-Tagged M Protein Allows Dynamic Imaging of M Protein and Virus Uncoating in Infected Cells

2009 ◽  
Vol 83 (6) ◽  
pp. 2611-2622 ◽  
Author(s):  
Subash C. Das ◽  
Debasis Panda ◽  
Debasis Nayak ◽  
Asit K. Pattnaik

ABSTRACT A recombinant vesicular stomatitis virus (VSV-PeGFP-M-MmRFP) encoding enhanced green fluorescent protein fused in frame with P (PeGFP) in place of P and a fusion matrix protein (monomeric red fluorescent protein fused in frame at the carboxy terminus of M [MmRFP]) at the G-L gene junction, in addition to wild-type (wt) M protein in its normal location, was recovered, but the MmRFP was not incorporated into the virions. Subsequently, we generated recombinant viruses (VSV-PeGFP-ΔM-Mtc and VSV-ΔM-Mtc) encoding M protein with a carboxy-terminal tetracysteine tag (Mtc) in place of the M protein. These recombinant viruses incorporated Mtc at levels similar to M in wt VSV, demonstrating recovery of infectious rhabdoviruses encoding and incorporating a tagged M protein. Virions released from cells infected with VSV-PeGFP-ΔM-Mtc and labeled with the biarsenical red dye (ReAsH) were dually fluorescent, fluorescing green due to incorporation of PeGFP in the nucleocapsids and red due to incorporation of ReAsH-labeled Mtc in the viral envelope. Transport and subsequent association of M protein with the plasma membrane were shown to be independent of microtubules. Sequential labeling of VSV-ΔM-Mtc-infected cells with the biarsenical dyes ReAsH and FlAsH (green) revealed that newly synthesized M protein reaches the plasma membrane in less than 30 min and continues to accumulate there for up to 2 1/2 hours. Using dually fluorescent VSV, we determined that following adsorption at the plasma membrane, the time taken by one-half of the virus particles to enter cells and to uncoat their nucleocapsids in the cytoplasm is approximately 28 min.

2006 ◽  
Vol 87 (11) ◽  
pp. 3379-3384 ◽  
Author(s):  
Brian D. Lichty ◽  
Heidi McBride ◽  
Stephen Hanson ◽  
John C. Bell

Vesicular stomatitis virus (VSV) is a rhabdovirus that has attracted attention of late as an oncolytic virus and as a vaccine vector. Mutations in the matrix (M) gene of VSV yield attenuated strains that may be very useful in both settings. As a result of this interest in the M protein, this study analysed various M–green fluorescent protein (GFP) fusion constructs. Remarkably, fusion of the N terminus of the M protein to GFP targeted the fluorescent protein to the surface of mitochondria. Mutational analysis indicated that a mitochondrial-targeting motif exists within aa 33–67. Expression of these fusion proteins led to loss of mitochondrial membrane permeability and to an alteration in mitochondrial organization mirroring that seen during viral infection. In addition, a portion of the M protein present in infected cells co-purified with mitochondria. This work may indicate a novel function for this multifunctional viral protein.


1984 ◽  
Vol 62 (11) ◽  
pp. 1174-1180 ◽  
Author(s):  
John Capone ◽  
Hara P. Ghosh

The matrix protein M and the nucleocapsid protein N were isolated from vesicular stomatitis virus and reconstituted into artificial phospholipid vesicles. While the M protein could be reconstituted into phospholipid vesicles, the N protein had no affinity for lipid vesicles. The N protein could, however, associate with phospholipid vesicles in the presence of M protein. Identical results were also obtained when an in vitro system synthesizing M and N proteins was used for reconstitution. The results suggest that M protein is involved in virus maturation by interacting with the viral envelope and the N protein of the nucleoprotein core.


2007 ◽  
Vol 88 (9) ◽  
pp. 2559-2567 ◽  
Author(s):  
Takashi Irie ◽  
Elena Carnero ◽  
Atsushi Okumura ◽  
Adolfo García-Sastre ◽  
Ronald N. Harty

The matrix (M) protein of vesicular stomatitis virus (VSV) is a multi-functional protein involved in virus assembly, budding and pathogenesis. The 24PPPY27 late (L) domain of the M protein plays a key role in virus budding, whereas amino acids downstream of the PPPY motif contribute to host protein shut-off and pathogenesis. Using a panel of 37PSAP40 recombinant viruses, it has been demonstrated previously that the PSAP region of M does not possess L-domain activity similar to that of PPPY in BHK-21 cells. This study reports the unanticipated finding that these PSAP recombinants were attenuated in cell culture and in mice compared with control viruses. Indeed, PSAP recombinant viruses exhibited a small-plaque phenotype, reduced CPE, reduced levels of activated caspase-3, enhanced production of IFN-β and reduced titres in the lungs and brains of infected mice. In particular, recombinant virus M6PY>A4-R34E was the most severely attenuated, exhibiting little or no CPE in cell culture and undetectable titres in the lungs and brains of infected mice. These findings indicate an important role for the PSAP region (aa 33–44) of the M protein in the pathology of VSV infection and may have implications for the development of VSV as a vaccine and/or oncolytic vector.


1988 ◽  
Vol 107 (5) ◽  
pp. 1707-1715 ◽  
Author(s):  
J E Bergmann ◽  
P J Fusco

Using monoclonal antibodies and indirect immunofluorescence microscopy, we investigated the distribution of the M protein in situ in vesicular stomatitis virus-(VSV) infected MDCK cells. M protein was observed free in the cytoplasm and associated with the plasma membrane. Using the ts045 mutant of VSV to uncouple the synthesis and transport of the VSV G protein we demonstrated that this distribution was not related to the presence of G protein on the cell surface. Sections of epon-embedded infected cells labeled with antibody to the M protein and processed for indirect horseradish peroxidase immunocytochemistry revealed that the M protein was associated specifically with the basolateral plasma membrane. The G and M proteins of VSV have therefore evolved features which bring them independently to the basolateral membrane of polarized epithelial cells and allow virus to bud specifically from that membrane.


2016 ◽  
Vol 90 (13) ◽  
pp. 6159-6170 ◽  
Author(s):  
Shalane K. Yacovone ◽  
Amanda M. Smelser ◽  
Jed C. Macosko ◽  
George Holzwarth ◽  
David A. Ornelles ◽  
...  

ABSTRACTThe distribution of vesicular stomatitis virus (VSV) nucleocapsids in the cytoplasm of infected cells was analyzed by scanning confocal fluorescence microscopy using a newly developed quantitative approach called the border-to-border distribution method. Nucleocapsids were located near the cell nucleus at early times postinfection (2 h) but were redistributed during infection toward the edges of the cell. This redistribution was inhibited by treatment with nocodazole, colcemid, or cytochalasin D, indicating it is dependent on both microtubules and actin filaments. The role of actin filaments in nucleocapsid mobility was also confirmed by live-cell imaging of fluorescent nucleocapsids of a virus containing P protein fused to enhanced green fluorescent protein. However, in contrast to the overall redistribution in the cytoplasm, the incorporation of nucleocapsids into virions as determined in pulse-chase experiments was dependent on the activity of actin filaments with little if any effect on inhibition of microtubule function. These results indicate that the mechanisms by which nucleocapsids are transported to the farthest reaches of the cell differ from those required for incorporation into virions. This is likely due to the ability of nucleocapsids to follow shorter paths to the plasma membrane mediated by actin filaments.IMPORTANCENucleocapsids of nonsegmented negative-strand viruses like VSV are assembled in the cytoplasm during genome RNA replication and must migrate to the plasma membrane for assembly into virions. Nucleocapsids are too large to diffuse in the cytoplasm in the time required for virus assembly and must be transported by cytoskeletal elements. Previous results suggested that microtubules were responsible for migration of VSV nucleocapsids to the plasma membrane for virus assembly. Data presented here show that both microtubules and actin filaments are responsible for mobility of nucleocapsids in the cytoplasm, but that actin filaments play a larger role than microtubules in incorporation of nucleocapsids into virions.


2015 ◽  
Vol 89 (23) ◽  
pp. 11750-11760 ◽  
Author(s):  
Timothy K. Soh ◽  
Sean P. J. Whelan

ABSTRACTVesicular stomatitis virus (VSV) assembly requires condensation of the viral ribonucleoprotein (RNP) core with the matrix protein (M) during budding from the plasma membrane. The RNP core comprises the negative-sense genomic RNA completely coated by the nucleocapsid protein (N) and associated by a phosphoprotein (P) with the large polymerase protein (L). To study the assembly of single viral particles, we tagged M and P with fluorescent proteins. We selected from a library of viruses with insertions in the M gene a replication-competent virus containing a fluorescent M and combined that with our previously described virus containing fluorescent P. Virus particles containing those fusions maintained the same bullet shape appearance as wild-type VSV but had a modest increase in particle length, reflecting the increased genome size. Imaging of the released particles revealed a variation in the amount of M and P assembled into the virions, consistent with a flexible packaging mechanism. We used the recombinants to further study the importance of the late domains in M, which serve to recruit the endosomal sorting complex required for transport (ESCRT) machinery during budding. Mutations in late domains resulted in the accumulation of virions that failed to pinch off from the plasma membrane. Imaging of single virions released from cells that were coinfected with M tagged with enhanced green fluorescent protein and M tagged with mCherry variants in which the late domains of one virus were inactivated by mutation showed a strong bias against the incorporation of the late-domain mutant into the released virions. In contrast, the intracellular expression and membrane association of the two variants were unaltered. These studies provide new tools for imaging particle assembly and enhance our resolution of existing models for assembly of VSV.IMPORTANCEAssembly of vesicular stomatitis virus (VSV) particles requires the separate trafficking of the viral replication machinery, a matrix protein (M) and a glycoprotein, to the plasma membrane. The matrix protein contains a motif termed a “late domain” that engages the host endosomal sorting complex required for transport (ESCRT) machinery to facilitate the release of viral particles. Inactivation of the late domains through mutation results in the accumulation of virions arrested at the point of release. In the study described here, we developed new tools to study VSV assembly by fusing fluorescent proteins to M and to a constituent of the replication machinery, the phosphoprotein (P). We used those tools to show that the late domains of M are required for efficient incorporation into viral particles and that the particles contain a variable quantity of M and P.


2002 ◽  
Vol 76 (16) ◽  
pp. 8011-8018 ◽  
Author(s):  
Himangi R. Jayakar ◽  
Michael A. Whitt

ABSTRACT The matrix (M) protein of vesicular stomatitis virus (VSV) is a multifunctional protein that is responsible for condensation of the ribonucleocapsid core during virus assembly and also plays a critical role in virus budding. The M protein is also responsible for most of the cytopathic effects (CPE) observed in infected cells. VSV CPE include inhibition of host gene expression, disablement of nucleocytoplasmic transport, and disruption of the host cytoskeleton, which results in rounding of infected cells. In this report, we show that the VSV M gene codes for two additional polypeptides, which we have named M2 and M3. These proteins are synthesized from downstream methionines in the same open reading frame as the M protein (which we refer to here as M1) and lack the first 32 (M2) or 50 (M3) amino acids of M1. Infection of cells with a recombinant virus that does not express M2 and M3 (M33,51A) resulted in a delay in cell rounding, but virus yield was not affected. Transient expression of M2 and M3 alone caused cell rounding similar to that with the full-length M1 protein, suggesting that the cell-rounding function of the M protein does not require the N-terminal 50 amino acids. To determine if M2 and M3 were sufficient for VSV-mediated CPE, both M2 and M3 were expressed from a separate cistron in a VSV mutant background that readily establishes persistent infections and that normally lacks CPE. Infection of cells with the recombinant virus that expressed M2 and M3 resulted in cell rounding indistinguishable from that with the wild-type recombinant virus. These results suggest that M2 and M3 are important for cell rounding and may play an important role in viral cytopathogenesis. To our knowledge, this is first report of the multiple coding capacities of a rhabdovirus matrix gene.


1999 ◽  
Vol 73 (4) ◽  
pp. 3430-3437 ◽  
Author(s):  
Alexandra Meindl ◽  
Nikolaus Osterrieder

ABSTRACT Experiments were conducted to analyze the equine herpesvirus 1 (EHV-1) gene 68 product which is encoded by the EHV-1 US2 homolog. An antiserum directed against the amino-terminal 206 amino acids of the EHV-1 US2 protein specifically detected a protein with an M r of 34,000 in cells infected with EHV-1 strain RacL11. EHV-1 strain Ab4 encodes a 44,000-M r Us2 protein, whereas vaccine strain RacH, a high-passage derivative of RacL11, encodes a 31,000-M r Us2 polypeptide. Irrespective of its size, the US2 protein was incorporated into virions. The EHV-1 US2 protein localized to membrane and nuclear fractions of RacL11-infected cells and to the envelope fraction of purified virions. To monitor intracellular trafficking of the protein, the green fluorescent protein (GFP) was fused to the carboxy terminus of the EHV-1 US2 protein or to a truncated US2 protein lacking a stretch of 16 hydrophobic amino acids at the extreme amino terminus. Both fusion proteins were detected at the plasma membrane and accumulated in the vicinity of nuclei of transfected cells. However, trafficking of either GFP fusion protein through the secretory pathway could not be demonstrated, and the EHV-1 US2 protein lacked detectable N- and O-linked carbohydrates. Consistent with the presence of the US2 protein in the viral envelope and plasma membrane of infected cells, a US2-negative RacL11 mutant (L11ΔUS2) exhibited delayed penetration kinetics and produced smaller plaques compared with either wild-type RacL11 or a US2-repaired virus. After infection of BALB/c mice with L11ΔUS2, reduced pathogenicity compared with the parental RacL11 virus and the repaired virus was observed. It is concluded that the EHV-1 US2 protein modulates virus entry and cell-to-cell spread and appears to support sustained EHV-1 replication in vivo.


2015 ◽  
Vol 89 (21) ◽  
pp. 11019-11029 ◽  
Author(s):  
Frauke Beilstein ◽  
Linda Obiang ◽  
Hélène Raux ◽  
Yves Gaudin

ABSTRACTThe matrix protein (M) of vesicular stomatitis virus (VSV) is involved in virus assembly, budding, gene regulation, and cellular pathogenesis. Using a yeast two-hybrid system, the M globular domain was shown to interact with LMP2, a catalytic subunit of the immunoproteasome (which replaces the standard proteasome catalytic subunit PSMB6). The interaction was validated by coimmunoprecipitation of M and LMP2 in VSV-infected cells. The sites of interaction were characterized. A single mutation of M (I96A) which significantly impairs the interaction between M and LMP2 was identified. We also show that M preferentially binds to the inactive precursor of LMP2 (bearing an N-terminal propeptide which is cleaved upon LMP2 maturation). Furthermore, taking advantage of a sequence alignment between LMP2 and its proteasome homolog, PSMB6 (which does not bind to M), we identified a mutation (L45R) in the S1 pocket where the protein substrate binds prior to cleavage and a second one (D17A) of a conserved residue essential for the catalytic activity, resulting in a reduction of the level of binding to M. The combination of both mutations abolishes the interaction. Taken together, our data indicate that M binds to LMP2 before its incorporation into the immunoproteasome. As the immunoproteasome promotes the generation of major histocompatibility complex (MHC) class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells, we suggest that M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system.IMPORTANCEThe immunoproteasome promotes the generation of MHC class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells. Here, we report on the association of vesicular stomatitis virus (VSV) matrix protein (M) with LMP2, one of the immunoproteasome-specific catalytic subunits. M preferentially binds to the LMP2 inactive precursor. The M-binding site on LMP2 is facing inwards in the immunoproteasome and is therefore not accessible to M after its assembly. Hence, M binds to LMP2 before its incorporation into the immunoproteasome. We suggest that VSV M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. Modulating this M-induced immunoproteasome impairment might be relevant in order to optimize VSV for oncolytic virotherapy.


2006 ◽  
Vol 80 (23) ◽  
pp. 11733-11742 ◽  
Author(s):  
Zackary W. Whitlow ◽  
John H. Connor ◽  
Douglas S. Lyles

ABSTRACT Host protein synthesis is inhibited in cells infected with vesicular stomatitis virus (VSV). It has been proposed that viral mRNAs are subjected to the same inhibition but are predominantly translated because of their abundance. To compare translation efficiencies of viral and host mRNAs during infection, we used an enhanced green fluorescent protein (EGFP) reporter expressed from a recombinant virus or from the host nucleus in stably transfected cells. Translation efficiency of host-derived EGFP mRNA was reduced more than threefold at eight hours postinfection, while viral-derived mRNA was translated around sevenfold more efficiently than host-derived EGFP mRNA in VSV-infected cells. To test whether mRNAs transcribed in the cytoplasm are resistant to shutoff of translation during VSV infection, HeLa cells were infected with a recombinant simian virus 5 (rSV5) that expressed GFP. Cells were then superinfected with VSV or mock superinfected. GFP mRNA transcribed by rSV5 was not resistant to translation inhibition during superinfection with VSV, indicating that transcription in the cytoplasm is not sufficient for preventing translation inhibition. To determine if cis-acting sequences in untranslated regions (UTRs) were involved in preferential translation of VSV mRNAs, we constructed EGFP reporters with VSV or control UTRs and measured the translation efficiency in mock-infected and VSV-infected cells. The presence of VSV UTRs did not affect mRNA translation efficiency in mock- or VSV-infected cells, indicating that VSV mRNAs do not contain cis-acting sequences that influence translation. However, we found that when EGFP mRNAs transcribed by VSV or by the host were translated in vitro, VSV-derived EGFP mRNA was translated 22 times more efficiently than host-derived EGFP mRNA. This indicated that VSV mRNAs do contain cis-acting structural elements (that are not sequence based), which enhance translation efficiency of viral mRNAs.


Sign in / Sign up

Export Citation Format

Share Document