scholarly journals Silencing of both β-TrCP1 and HOS (β-TrCP2) Is Required To Suppress Human Immunodeficiency Virus Type 1 Vpu-Mediated CD4 Down-Modulation

2006 ◽  
Vol 81 (3) ◽  
pp. 1502-1505 ◽  
Author(s):  
Christophe Butticaz ◽  
Olivier Michielin ◽  
Josiane Wyniger ◽  
Amalio Telenti ◽  
Sylvia Rothenberger

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Vpu protein interacts with CD4 within the endoplasmic reticula of infected cells and targets CD4 for degradation through interaction with β-TrCP1. Mammals possess a homologue of β-TrCP1, HOS, which is also named β-TrCP2. We show by coimmunoprecipitation experiments that β-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as β-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be reversed through the individual silencing of endogenous β-TrCP1 or β-TrCP2 but instead required the two genes to be silenced simultaneously.

1994 ◽  
Vol 180 (4) ◽  
pp. 1283-1293 ◽  
Author(s):  
T J Tsomides ◽  
A Aldovini ◽  
R P Johnson ◽  
B D Walker ◽  
R A Young ◽  
...  

We have established long-term cultures of several cell lines stably and uniformly expressing human immunodeficiency virus type 1 (HIV-1) in order to (a) identify naturally processed HIV-1 peptides recognized by cytotoxic T lymphocytes (CTL) from HIV-1-seropositive individuals and (b) consider the hypothesis that naturally occurring epitope densities on HIV-infected cells may limit their lysis by CTL. Each of two A2-restricted CD8+ CTL specific for HIV-1 gag or reverse transcriptase (RT) recognized a single naturally processed HIV-1 peptide in trifluoroacetic acid (TFA) extracts of infected cells: gag 77-85 (SLYNTVATL) or RT 476-484 (ILKEPVHGV). Both processed peptides match the synthetic peptides that are optimally active in cytotoxicity assays and have the consensus motif described for A2-associated peptides. Their abundances were approximately 400 and approximately 12 molecules per infected Jurkat-A2 cell, respectively. Other synthetic HIV-1 peptides active at subnanomolar concentrations were not present in infected cells. Except for the antigen processing mutant line T2, HIV-infected HLA-A2+ cell lines were specifically lysed by both A2-restricted CTL, although infected Jurkat-A2 cells were lysed more poorly by RT-specific CTL than by gag-specific CTL, suggesting that low cell surface density of a natural peptide may limit the effectiveness of some HIV-specific CTL despite their vigorous activity against synthetic peptide-treated target cells.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1798
Author(s):  
Grant R. Campbell ◽  
Stephen A. Spector

Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.


2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


2001 ◽  
Vol 75 (16) ◽  
pp. 7266-7279 ◽  
Author(s):  
Dai Wang ◽  
Cynthia de la Fuente ◽  
Longwen Deng ◽  
Lai Wang ◽  
Irene Zilberman ◽  
...  

ABSTRACT Cyclin-dependent kinases (cdk's) have recently been suggested to regulate human immunodeficiency virus type 1 (HIV-1) transcription. Previously, we have shown that expression of one cdk inhibitor, p21/Waf1, is abrogated in HIV-1 latently infected cells. Based on this result, we investigated the transcription of HIV-1 in the presence of chemical drugs that specifically inhibited cdk activity and functionally mimicked p21/Waf1 activity. HIV-1 production in virally integrated lymphocytic and monocytic cell lines, such as ACH2, 8E5, and U1, as well as activated peripheral blood mononuclear cells infected with syncytium-inducing (SI) or non-syncytium-inducing (NSI) HIV-1 strains, were all inhibited by Roscovitine, a purine derivative that reversibly competes for the ATP binding site present in cdk's. The decrease in viral progeny in the HIV-1-infected cells was correlated with a decrease in the transcription of HIV-1 RNAs in cells treated with Roscovitine and not with the non-cdk general cell cycle inhibitors, such as hydroxyurea (G1/S blocker) or nocodazole (M-phase blocker). Cyclin A- and E-associated histone H1 kinases, as well as cdk 7 and 9 activities, were all inhibited in the presence of Roscovitine. The 50% inhibitory concentration of Roscovitine on cdk's 9 and 7 was determined to be ∼0.6 μM. Roscovitine could selectively sensitize HIV-1-infected cells to apoptosis at concentrations that did not impede the growth and proliferation of uninfected cells. Apoptosis induced by Roscovitine was found in both latent and activated infected cells, as evident by Annexin V staining and the cleavage of the PARP protein by caspase-3. More importantly, contrary to many apoptosis-inducing agents, where the apoptosis of HIV-1-infected cells accompanies production and release of infectious HIV-1 viral particles, Roscovitine treatment selectively killed HIV-1-infected cells without virion release. Collectively, our data suggest that cdk's are required for efficient HIV-1 transcription and, therefore, we propose specific cdk inhibitors as potential antiviral agents in the treatment of AIDS.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4737-4745 ◽  
Author(s):  
G Furlini ◽  
M Vignoli ◽  
E Ramazzotti ◽  
MC Re ◽  
G Visani ◽  
...  

In human immunodeficiency virus type-1 (HIV-1) infected individuals, CD34+ hematopoietic stem/progenitor cells are profoundly impaired in their proliferation/differentiation capacities. The bulk of the available experimental evidence seems to indicate that hematopoietic progenitors are not susceptible to HIV-1 infection and their defects seem rather the consequence of direct or indirect negative influences of HIV-1-specific soluble proteins released by productively infected accessory cells. We have now shown that in the presence of a concurrent human herpesvirus-6 infection, two hematopoietic (TF-1 [erythromyeloid] and KG-1 [lymphomyeloid]) progenitor cell lines and human CD34+ hematopoietic progenitors isolated from the bone marrow of normal donors, became susceptible to HIV-1 infection and permissive to HIV-1 replication, although with a limited virus yield. These results suggest a further possible mechanism leading to hematopoietic derangement in HIV-1-infected subjects and may help to clarify the controversial issue of the susceptibility of human hematopoietic progenitors to HIV-1 infection.


2009 ◽  
Vol 83 (17) ◽  
pp. 8596-8603 ◽  
Author(s):  
Earl Stoddard ◽  
Houping Ni ◽  
Georgetta Cannon ◽  
Chunhui Zhou ◽  
Neville Kallenbach ◽  
...  

ABSTRACT The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.


2000 ◽  
Vol 74 (11) ◽  
pp. 5373-5376 ◽  
Author(s):  
Andreas Bültmann ◽  
Josef Eberle ◽  
Jürgen Haas

ABSTRACT Expression of the human immunodeficiency virus type 1 (HIV-1) Env glycoprotein is stringently regulated in infected cells. The majority of the glycoprotein does not reach the cell surface but rather is retained in the endoplasmic reticulum or a cis-Golgi compartment and subsequently degraded. We here report that Env of various HIV-1 isolates is ubiquitinated at the extracellular domain of gp41 and that Env expression could be increased by lactacystin, a specific proteasome inhibitor, suggesting that the ubiquitin/proteasome system is involved in control of expression and degradation.


2005 ◽  
Vol 79 (21) ◽  
pp. 13579-13586 ◽  
Author(s):  
W. David Wick ◽  
Otto O. Yang ◽  
Lawrence Corey ◽  
Steven G. Self

ABSTRACT The antiviral role of CD8+ cytotoxic T lymphocytes (CTLs) in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. Specifically, the degree to which CTLs reduce viral replication by killing HIV-1-infected cells in vivo is not known. Here we employ mathematical models of the infection process and CTL action to estimate the rate that CTLs can kill HIV-1-infected cells from in vitro and in vivo data. Our estimates, which are surprisingly consistent considering the disparities between the two experimental systems, demonstrate that on average CTLs can kill from 0.7 to 3 infected target cells per day, with the variability in this figure due to epitope specificity or other factors. These results are compatible with the observed decline in viremia after primary infection being primarily a consequence of CTL activity and have interesting implications for vaccine design.


2008 ◽  
Vol 82 (8) ◽  
pp. 3932-3938 ◽  
Author(s):  
Aneeza Salim ◽  
Lee Ratner

ABSTRACT Vpu (viral protein U) is a 17-kDa human immunodeficiency virus type 1 (HIV-1) accessory protein that enhances the release of particles from the surfaces of infected cells. Vpu recruits β-transducin repeat-containing protein (β-TrCP) and mediates proteasomal degradation of CD4. By sequestering β-TrCP away from other cellular substrates, Vpu leads to the stabilization of β-TrCP substrates such as β-catenin, IκBα, ATF4, and Cdc25A, but not of other substrates such as Emi1. This study shows that in addition to stabilizing β-catenin, Vpu leads to the depression of both total and β-catenin-associated E-cadherin levels through β-TrCP-dependent stabilization of the transcriptional repressor Snail. We showed that both downregulation of overall E-cadherin levels and dissociation of E-cadherin from β-catenin result in enhanced viral release. By contrast, the overexpression of E-cadherin or the prevention of the dissociation of E-cadherin from β-catenin results in depressed levels of virus release. Since E-cadherin is expressed only in dendritic cells and macrophages, and not in T cells, our data suggest that the HIV-1 vpu gene may have evolved to counteract different restrictions to assembly in different cells.


Sign in / Sign up

Export Citation Format

Share Document