scholarly journals Loss of Protein Kinase PKR Expression in Human HeLa Cells Complements the Vaccinia Virus E3L Deletion Mutant Phenotype by Restoration of Viral Protein Synthesis

2007 ◽  
Vol 82 (2) ◽  
pp. 840-848 ◽  
Author(s):  
Ping Zhang ◽  
Bertram L. Jacobs ◽  
Charles E. Samuel

ABSTRACT The E3L proteins encoded by vaccinia virus bind double-stranded RNA and mediate interferon resistance, promote virus growth, and impair virus-mediated apoptosis. Among the cellular proteins implicated as targets of E3L is the protein kinase regulated by RNA (PKR). To test in human cells the role of PKR in conferring the E3L mutant phenotype, HeLa cells stably deficient in PKR generated by an RNA interference-silencing strategy were compared to parental and control knockdown cells following infection with either an E3L deletion mutant (ΔE3L) or wild-type (WT) virus. The growth yields of WT virus were comparable in PKR-sufficient and -deficient cells. By contrast, the single-cycle yield of ΔE3L virus was increased by nearly 2 log10 in PKR-deficient cells over the impaired growth in PKR-sufficient cells. Furthermore, virus-induced apoptosis characteristic of the ΔE3L mutant in PKR-sufficient cells was effectively abolished in PKR-deficient HeLa cells. The viral protein synthesis pattern was altered in ΔE3L-infected PKR-sufficient cells, characterized by an inhibition of late viral protein expression, whereas in PKR-deficient cells, late protein accumulation was restored. Phosphorylation of both PKR and the α subunit of protein synthesis initiation factor 2 (eIF-2α) was elevated severalfold in ΔE3L-infected PKR-sufficient, but not PKR-deficient, cells. WT virus did not significantly increase PKR or eIF-2α phosphorylation in either PKR-sufficient or -deficient cells, both of which supported efficient WT viral protein production. Finally, apoptosis induced by infection of PKR-sufficient HeLa cells with ΔE3L virus was blocked by a caspase antagonist, but mutant virus growth was not rescued, suggesting that translation inhibition rather than apoptosis activation is a principal factor limiting virus growth.

2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Anil Pant ◽  
Shuai Cao ◽  
Zhilong Yang

ABSTRACTViruses actively interact with host metabolism because viral replication relies on host cells to provide nutrients and energy. Vaccinia virus (VACV; the prototype poxvirus) prefers glutamine to glucose for efficient replication to the extent that VACV replication is hindered in glutamine-free medium. Remarkably, our data show that VACV replication can be fully rescued from glutamine depletion by asparagine supplementation. By global metabolic profiling, as well as genetic and chemical manipulation of the asparagine supply, we provide evidence demonstrating that the production of asparagine, which exclusively requires glutamine for biosynthesis, accounts for VACV’s preference of glutamine to glucose rather than glutamine’s superiority over glucose in feeding the tricarboxylic acid (TCA) cycle. Furthermore, we show that sufficient asparagine supply is required for efficient VACV protein synthesis. Our study highlights that the asparagine supply, the regulation of which has been evolutionarily tailored in mammalian cells, presents a critical barrier to VACV replication due to a high asparagine content of viral proteins and a rapid demand of viral protein synthesis. The identification of asparagine availability as a critical limiting factor for efficient VACV replication suggests a new direction of antiviral strategy development.IMPORTANCEViruses rely on their infected host cells to provide nutrients and energy for replication. Vaccinia virus, the prototypic member of the poxviruses, which comprise many significant human and animal pathogens, prefers glutamine to glucose for efficient replication. Here, we show that the preference is not because glutamine is superior to glucose as the carbon source to fuel the tricarboxylic acid cycle for vaccinia virus replication. Rather interestingly, the preference is because the asparagine supply for efficient viral protein synthesis becomes limited in the absence of glutamine, which is necessary for asparagine biosynthesis. We provide further genetic and chemical evidence to demonstrate that asparagine availability plays a critical role in efficient vaccinia virus replication. This discovery identifies a weakness of vaccinia virus and suggests a possible direction to intervene in poxvirus infection.


2007 ◽  
Vol 82 (2) ◽  
pp. 828-839 ◽  
Author(s):  
Maria D. Gainey ◽  
Patrick J. Dillon ◽  
Kimberly M. Clark ◽  
Mary J. Manuse ◽  
Griffith D. Parks

ABSTRACT The paramyxovirus simian virus 5 (SV5) establishes highly productive persistent infections of epithelial cells without inducing a global inhibition of translation. Here we show that an SV5 mutant (the P/V-CPI− mutant) with substitutions in the P subunit of the viral polymerase and the accessory V protein also establishes highly productive infections like wild-type (WT) SV5 but that cells infected with the P/V-CPI− mutant show an overall shutdown of both host and viral translation at late times postinfection. Reduced host and viral protein synthesis with the P/V-CPI− virus was not due to lower levels of mRNA or caspase-dependent apoptosis and correlated with phosphorylation of the translation initiation factor eIF-2α. WT SV5 was a poor activator of the eIF-2α kinase protein kinase R (PKR). By contrast, the P/V-CPI− mutant induced PKR phosphorylation, which correlated with the time course of translation inhibition but was independent of interferon signaling. In HeLa cells that expressed the PKR inhibitor influenza A virus NS1 or reovirus sigma3, the rate of host protein synthesis at late times after infection with the P/V-CPI− mutant was restored to ∼50% that of control HeLa cells. By contrast, the rates of P/V-CPI− viral protein synthesis in HeLa cells expressing NS1 or sigma3 were dramatically enhanced, between 5- and 20-fold, while levels of viral mRNA were increased only slightly (NS1-expressing cells) or remained constant (sigma3-expressing cells). Similar results were found using HeLa cells where PKR levels were reduced due to knockdown by small interfering RNA. Expression of either the WT P or the WT V protein from the genome of the P/V-CPI− mutant resulted in lower levels of PKR activation and rates of host and viral protein synthesis that closely matched those seen with WT SV5. Despite higher rates of translation, cells infected with the V- or P-complemented virus accumulated viral mRNAs to lower levels than that seen with the parental P/V-CPI− mutant. We present a model in which the paramyxovirus P/V gene products limit induction of PKR by limiting the synthesis of aberrant viral mRNAs and double-stranded RNA and thus prevent the shutdown of translation by a mechanism that differs from that of other PKR inhibitors such as NS1 and sigma3.


2016 ◽  
Vol 90 (8) ◽  
pp. 3839-3848 ◽  
Author(s):  
Benjamin Ziehr ◽  
Heather A. Vincent ◽  
Nathaniel J. Moorman

ABSTRACTHuman cytomegalovirus (HCMV) counteracts host defenses that otherwise act to limit viral protein synthesis. One such defense is the antiviral kinase protein kinase R (PKR), which inactivates the eukaryotic initiation factor 2 (eIF2) translation initiation factor upon binding to viral double-stranded RNAs. Previously, the viral TRS1 and IRS1 proteins were found to antagonize the antiviral kinase PKR outside the context of HCMV infection, and the expression of either pTRS1 or pIRS1 was shown to be necessary for HCMV replication. In this study, we found that expression of either pTRS1 or pIRS1 is necessary to prevent PKR activation during HCMV infection and that antagonism of PKR is critical for efficient viral replication. Consistent with a previous study, we observed decreased overall levels of protein synthesis, reduced viral protein expression, and diminished virus replication in the absence of both pTRS1 and pIRS1. In addition, both PKR and eIF2α were phosphorylated during infection when pTRS1 and pIRS1 were absent. We also found that expression of pTRS1 was both necessary and sufficient to prevent stress granule formation in response to eIF2α phosphorylation. Depletion of PKR prevented eIF2α phosphorylation, rescued HCMV replication and protein synthesis, and reversed the accumulation of stress granules in infected cells. Infection with an HCMV mutant lacking the pTRS1 PKR binding domain resulted in PKR activation, suggesting that pTRS1 inhibits PKR through a direct interaction. Together our results show that antagonism of PKR by HCMV pTRS1 and pIRS1 is critical for viral protein expression and efficient HCMV replication.IMPORTANCETo successfully replicate, viruses must counteract host defenses that limit viral protein synthesis. We have identified inhibition of the antiviral kinase PKR by the viral proteins TRS1 and IRS1 and shown that this is a critical step in HCMV replication. Our results suggest that inhibiting pTRS1 and pIRS1 function or restoring PKR activity during infection may be a successful strategy to limit HCMV disease.


2000 ◽  
Vol 11 (7) ◽  
pp. 2497-2511 ◽  
Author(s):  
Jacomine Krijnse Locker ◽  
Annett Kuehn ◽  
Sibylle Schleich ◽  
Gaby Rutter ◽  
Heinrich Hohenberg ◽  
...  

The simpler of the two infectious forms of vaccinia virus, the intracellular mature virus (IMV) is known to infect cells less efficiently than the extracellular enveloped virus (EEV), which is surrounded by an additional, TGN-derived membrane. We show here that when the IMV binds HeLa cells, it activates a signaling cascade that is regulated by the GTPase rac1 and rhoA, ezrin, and both tyrosine and protein kinase C phosphorylation. These cascades are linked to the formation of actin and ezrin containing protrusions at the plasma membrane that seem to be essential for the entry of IMV cores. The identical cores of the EEV also appear to enter at the cell surface, but surprisingly, without the need for signaling and actin/membrane rearrangements. Thus, in addition to its known role in wrapping the IMV and the formation of intracellular actin comets, the membrane of the EEV seems to have evolved the capacity to enter cells silently, without a need for signaling.


2010 ◽  
Vol 84 (20) ◽  
pp. 10457-10466 ◽  
Author(s):  
Margarito Rojas ◽  
Carlos F. Arias ◽  
Susana López

ABSTRACT The eukaryotic initiation translation factor 2 (eIF2) represents a key point in the regulation of protein synthesis. This factor delivers the initiator Met-tRNA to the ribosome, a process that is conserved in all eukaryotic cells. Many types of stress reduce global translation by triggering the phosphorylation of the α subunit of eIF2, which reduces the formation of the preinitiation translation complexes. Early during rotavirus infection, eIF2α becomes phosphorylated, and even under these conditions viral protein synthesis is not affected, while most of the cell protein synthesis is blocked. Here, we found that the kinase responsible for the phosphorylation of eIF2α in rotavirus-infected cells is PKR, since in mouse embryonic fibroblasts deficient in the kinase domain of PKR, or in MA104 cells where the expression of PKR was knocked down by RNA interference, eIF2α was not phosphorylated upon rotavirus infection. The viral component responsible for the activation of PKR seems to be viral double-stranded RNA, which is found in the cytoplasm of infected cells, outside viroplasms. Taken together, these results suggest that rotaviruses induce the PKR branch of the interferon system and have evolved a mechanism to translate its proteins, surpassing the block imposed by eIF2α phosphorylation.


1997 ◽  
Vol 17 (7) ◽  
pp. 4146-4158 ◽  
Author(s):  
M Kawagishi-Kobayashi ◽  
J B Silverman ◽  
T L Ung ◽  
T E Dever

The mammalian double-stranded RNA-activated protein kinase PKR is a component of the cellular antiviral defense mechanism and phosphorylates Ser-51 on the alpha subunit of the translation factor eIF2 to inhibit protein synthesis. To identify the molecular determinants that specify substrate recognition by PKR, we performed a mutational analysis on the vaccinia virus K3L protein, a pseudosubstrate inhibitor of PKR. High-level expression of PKR is lethal in the yeast Saccharomyces cerevisiae because PKR phosphorylates eIF2alpha and inhibits protein synthesis. We show that coexpression of vaccinia virus K3L can suppress the growth-inhibitory effects of PKR in yeast, and using this system, we identified both loss-of-function and hyperactivating mutations in K3L. Truncation of, or point mutations within, the C-terminal portion of the K3L protein, homologous to residues 79 to 83 in eIF2alpha, abolished PKR inhibitory activity, whereas the hyperactivating mutation, K3L-H47R, increased the homology between the K3L protein and eIF2alpha adjacent to the phosphorylation site at Ser-51. Biochemical and yeast two-hybrid analyses revealed that the suppressor phenotype of the K3L mutations correlated with the affinity of the K3L protein for PKR and was inversely related to the level of eIF2alpha phosphorylation in the cell. These results support the idea that residues conserved between the pseudosubstrate K3L protein and the authentic substrate eIF2alpha play an important role in substrate recognition, and they suggest that PKR utilizes sequences both near and over 30 residues from the site of phosphorylation for substrate recognition. Finally, by reconstituting part of the mammalian antiviral defense mechanism in yeast, we have established a genetically useful system to study viral regulators of PKR.


1971 ◽  
Vol 229 (8) ◽  
pp. 239-241 ◽  
Author(s):  
HANS CAFFIER ◽  
HESCHEL J. RASKAS ◽  
J. THOMAS PARSONS ◽  
MAURICE GREEN

2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Gilad Sivan ◽  
Shira G. Glushakow-Smith ◽  
George C. Katsafanas ◽  
Jeffrey L. Americo ◽  
Bernard Moss

ABSTRACTReplication of vaccinia virus in human cells depends on the viral C7 or K1 protein. A previous human genome-wide short interfering RNA (siRNA) screen with a C7/K1 double deletion mutant revealed SAMD9 as a principal host range restriction factor along with additional candidates, including WDR6 and FTSJ1. To compare their abilities to restrict replication, the cellular genes were individually inactivated by CRISPR/Cas9 mutagenesis. The C7/K1 deletion mutant exhibited enhanced replication in each knockout (KO) cell line but reached wild-type levels only in SAMD9 KO cells. SAMD9 was not depleted in either WDR6 or FTSJ1 KO cells, suggesting less efficient alternative rescue mechanisms. Using the SAMD9 KO cells as controls, we verified a specific block in host and viral intermediate and late protein synthesis in HeLa cells and demonstrated that the inhibition could be triggered by events preceding viral DNA replication. Inhibition of cap-dependent and -independent protein synthesis occurred primarily at the translational level, as supported by DNA and mRNA transfection experiments. Concurrent with collapse of polyribosomes, viral mRNA was predominantly in 80S and lighter ribonucleoprotein fractions. We confirmed the accumulation of cytoplasmic granules in HeLa cells infected with the C7/K1 deletion mutant and further showed that viral mRNA was sequestered with SAMD9. RNA granules were still detected in G3BP KO U2OS cells, which remained nonpermissive for the C7/K1 deletion mutant. Inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral mRNA, and failure of PKR, RNase L, or G3BP KO cells to restore protein synthesis support an unusual mechanism of host restriction.IMPORTANCEA dynamic relationship exists between viruses and their hosts in which each ostensibly attempts to exploit the other’s vulnerabilities. A window is opened into the established condition, which evolved over millennia, if loss-of-function mutations occur in either the virus or host. Thus, the inability of viral host range mutants to replicate in specific cells can be overcome by identifying and inactivating the opposing cellular gene. Here, we investigated a C7/K1 host range mutant of vaccinia virus in which the cellular gene SAMD9 serves as the principal host restriction factor. Host restriction was triggered early in infection and manifested as a block in translation of viral mRNAs. Features of the block include inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral RNA, and inability to overcome the inhibition by inactivation of protein kinase R, ribonuclease L, or G3 binding proteins, suggesting a novel mechanism of host restriction.


Sign in / Sign up

Export Citation Format

Share Document