scholarly journals Immunization with Low Doses of Recombinant Postfusion or Prefusion Respiratory Syncytial Virus F Primes for Vaccine-Enhanced Disease in the Cotton Rat Model Independently of the Presence of a Th1-Biasing (GLA-SE) or Th2-Biasing (Alum) Adjuvant

2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Kirsten Schneider-Ohrum ◽  
Corinne Cayatte ◽  
Angie Snell Bennett ◽  
Gaurav Manohar Rajani ◽  
Patrick McTamney ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) infection of children previously immunized with a nonlive, formalin-inactivated (FI)-RSV vaccine has been associated with serious enhanced respiratory disease (ERD). Consequently, detailed studies of potential ERD are a critical step in the development of nonlive RSV vaccines targeting RSV-naive children and infants. The fusion glycoprotein (F) of RSV in either its postfusion (post-F) or prefusion (pre-F) conformation is a target for neutralizing antibodies and therefore an attractive antigen candidate for a pediatric RSV subunit vaccine. Here, we report the evaluation of RSV post-F and pre-F in combination with glucopyranosyl lipid A (GLA) integrated into stable emulsion (SE) (GLA-SE) and alum adjuvants in the cotton rat model. Immunization with optimal doses of RSV F antigens in the presence of GLA-SE induced high titers of virus-neutralizing antibodies and conferred complete lung protection from virus challenge, with no ERD signs in the form of alveolitis. To mimic a waning immune response, and to assess priming for ERD under suboptimal conditions, an antigen dose de-escalation study was performed in the presence of either GLA-SE or alum. At low RSV F doses, alveolitis-associated histopathology was unexpectedly observed with either adjuvant at levels comparable to FI-RSV-immunized controls. This occurred despite neutralizing-antibody titers above the minimum levels required for protection and with no/low virus replication in the lungs. These results emphasize the need to investigate a pediatric RSV vaccine candidate carefully for priming of ERD over a wide dose range, even in the presence of strong neutralizing activity, Th1 bias-inducing adjuvant, and protection from virus replication in the lower respiratory tract. IMPORTANCE RSV disease is of great importance worldwide, with the highest burden of serious disease occurring upon primary infection in infants and children. FI-RSV-induced enhanced disease, observed in the 1960s, presented a major and ongoing obstacle for the development of nonlive RSV vaccine candidates. The findings presented here underscore the need to evaluate a nonlive RSV vaccine candidate during preclinical development over a wide dose range in the cotton rat RSV enhanced-disease model, as suboptimal dosing of several RSV F subunit vaccine candidates led to the priming for ERD. These observations are relevant to the validity of the cotton rat model itself and to safe development of nonlive RSV vaccines for seronegative infants and children.

2014 ◽  
Vol 95 (2) ◽  
pp. 301-306 ◽  
Author(s):  
R. Garg ◽  
L. Latimer ◽  
E. Simko ◽  
V. Gerdts ◽  
A. Potter ◽  
...  

The majority of infections, including those caused by respiratory syncytial virus (RSV), occur at mucosal surfaces. As no RSV vaccine is available our goal is to produce an effective subunit vaccine with an adjuvant suitable for mucosal delivery and cross-presentation. A truncated secreted version of the RSV fusion (ΔF) protein formulated with polyI : C, an innate defence regulator peptide and polyphosphazene, induced local and systemic immunity, including affinity maturation of RSV F-specific IgG, IgA and virus-neutralizing antibodies, and F-specific CD8+ T-cells in the lung, when delivered intranasally. Furthermore, this ΔF protein formulation promoted the production of CD8+ central memory T-cells in the mediastinal lymph nodes and provided protection from RSV challenge. Formulation of ΔF protein with this adjuvant combination enhanced uptake by lung dendritic cells and trafficking to the draining lymph nodes. The ΔF protein formulation was confirmed to be highly efficacious and safe in cotton rats.


PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0188708 ◽  
Author(s):  
Corinne Cayatte ◽  
Angie Snell Bennett ◽  
Gaurav Manohar Rajani ◽  
Leigh Hostetler ◽  
Sean K. Maynard ◽  
...  

2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Kirsten Schneider-Ohrum ◽  
Angie Snell Bennett ◽  
Gaurav Manohar Rajani ◽  
Leigh Hostetler ◽  
Sean K. Maynard ◽  
...  

ABSTRACTRespiratory syncytial virus (RSV) infection of seronegative children previously immunized with formalin-inactivated (FI) RSV has been associated with serious enhanced respiratory disease (ERD). The phenomenon was reproduced in the cotton rat and the mouse, and both preclinical models have been routinely used to evaluate the safety of new RSV vaccine candidates. More recently, we demonstrated that immunizations with suboptimal doses of the RSV fusion (F) antigen, in its post- or prefusion conformation, and in the presence of a Th1-biasing adjuvant, unexpectedly led to ERD in the cotton rat model. To assess if those observations are specific to the cotton rat and to elucidate the mechanism by which vaccination with low antigen doses can drive ERD post-RSV challenge, we evaluated RSV post-F antigen dose de-escalation in BALB/c mice in the presence of a Th1-biasing adjuvant. While decreasing antigen doses, we observed an increase in lung inflammation associated with an upregulation of proinflammatory cytokines. The amplitude of the lung histopathology was comparable to that of FI-RSV-induced ERD, confirming the observations made in the cotton rat. Importantly, depletion of CD4+T cells prior to viral challenge completely abrogated ERD, preventing proinflammatory cytokine upregulation and the infiltration of T cells, neutrophils, eosinophils, and macrophages into the lung. Overall, low-antigen-dose-induced ERD resembles FI-RSV-induced ERD, except that the former appears in the absence of detectable levels of viral replication and in the context of a Th1-biased immune response. Taken together, our observations reinforce the recent concept that vaccines developed for RSV-naïve individuals should be systematically tested under suboptimal dosing conditions.IMPORTANCERSV poses a significant health care burden and is the leading cause of serious lower-respiratory-tract infections in young children. A formalin-inactivated RSV vaccine developed in the 1960s not only showed a complete lack of efficacy against RSV infection but also induced severe lung disease enhancement in vaccinated children. Since then, establishing safety in preclinical models has been one of the major challenges to RSV vaccine development. We recently observed in the cotton rat model that suboptimal immunizations with RSV fusion protein could induce lung disease enhancement. In the present study, we extended suboptimal dosing evaluation to the mouse model. We confirmed the induction of lung disease enhancement by vaccinations with low antigen doses and dissected the associated immune mechanisms. Our results stress the need to evaluate suboptimal dosing for any new RSV vaccine candidate developed for seronegative infants.


2016 ◽  
Vol 90 (21) ◽  
pp. 10022-10038 ◽  
Author(s):  
Bo Liang ◽  
Joan O. Ngwuta ◽  
Richard Herbert ◽  
Joanna Swerczek ◽  
David W. Dorward ◽  
...  

ABSTRACTHuman respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced “high-quality” RSV-neutralizing antibodies, defined as antibodies that neutralize RSVin vitrowithout added complement (B. Liang et al., J Virol 89:9499–9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials.IMPORTANCEHuman respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.


Vaccine ◽  
2000 ◽  
Vol 18 (24) ◽  
pp. 2735-2742 ◽  
Author(s):  
Liliane Goetsch ◽  
Hélène Plotnicky-Gilquin ◽  
Thierry Champion ◽  
Alain Beck ◽  
Nathalie Corvaı̈a ◽  
...  

Author(s):  
Jing Shan

Background: Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory infection globally. There are vaccines in pipeline to prevent it but a systematic review on immunogenicity and safety of vaccine is lacking. Methods: This systematic review of RSV vaccine clinical trials was undertaken using 4 databases. Searches were conducted using both controlled vocabulary terms such as ‘Respiratory Syncytial Virus, Human’, ‘Respiratory Syncytial Virus Infections’, ‘Respiratory Syncytial Virus Vaccines’, ‘Immunization’, ‘Immunization Programs’ and ‘Vaccines’ and corresponding text word terms. The searches for published papers were limited to clinical trials published from January 2000 to August 6th, 2018. RSV infection case was defined as RSV associated medically attended acute respiratory illness (MAARI) or RSV infection by serologically-confirmed test (Western Blot) during the RSV surveillance period. We calculated the relative risk of each vaccine trial with RSV infection case. Results: Of 4395 publications, 24 were included and data were extracted covering 4 major types of RSV vaccine candidates, these being live-attenuated/chimeric (n=9), recombinant-vector (n=10), subunit (n=1) and nanoparticle vaccines (n=4). For RSV infection cases, 7 trials were involved and none of them showed a vaccine-related increased MAARI during RSV surveillance season. Conclusion: LID ∆M2-2, MEDI M2-2, and RSVcps2 (live-attenuated) were considered the most promising vaccine candidates in infant and children. In the elderly, a nanoparticle F vaccine candidate was considered as a potential effective vaccine. Although no promising vaccine was identified from pregnant-women test, RSV F-024 subunit vaccine candidate and an RSV F nanoparticle vaccine showed encouraging results in healthy non-pregnant women.


Author(s):  
John Hunzeker ◽  
Teah Ruetschilling ◽  
Dana Mitzel ◽  
Matthew Reed ◽  
William Bechtold ◽  
...  

2015 ◽  
Vol 89 (13) ◽  
pp. 6835-6847 ◽  
Author(s):  
Lori McGinnes Cullen ◽  
Madelyn R. Schmidt ◽  
Sarah A. Kenward ◽  
Robert T. Woodland ◽  
Trudy G. Morrison

ABSTRACTVirus-like particles (VLPs) built on the Newcastle disease virus (NDV) core proteins, NP and M, and containing two chimeric proteins, F/F and H/G, composed of respiratory syncytial virus (RSV) fusion protein (F) and glycoprotein (G) ectodomains fused to the transmembrane and cytoplasmic domains of the NDV F and HN proteins, respectively, stimulate durable, protective RSV neutralizing antibodies in mice. Here, we report the properties of VLPs constructed to contain mutant RSV F protein ectodomains stabilized in prefusion (pre-F/F) or postfusion (post-F/F) configurations. The structures of the chimeric proteins assembled into VLPs were verified immunologically by their reactivities with a conformationally restricted anti-F protein monoclonal antibody. Following immunization of mice, without adjuvant, pre-F/F-containing VLPs induced significantly higher neutralizing antibody titers than the post-F/F-containing VLPs or the wild-type F/F-containing VLPs after a single immunization but not after prime and boost immunization. The specificities of anti-F IgG induced by the two mutant VLPs were assessed by enzyme-linked immunosorbent assay (ELISA) using soluble forms of the prefusion and postfusion forms of the F protein as targets. While both types of VLPs stimulated similar levels of IgG specific for the soluble postfusion F protein, titers of IgG specific for prefusion F induced by the pre-F/F-containing VLPs were higher than those induced by post-F/F-containing VLPs. Thus, VLPs containing a stabilized prefusion form of the RSV F protein represent a promising RSV vaccine candidate.IMPORTANCEThe development of vaccines for respiratory syncytial virus has been hampered by a lack of understanding of the requirements for eliciting high titers of neutralizing antibodies. The results of this study suggest that particle-associated RSV F protein containing mutations that stabilize the structure in a prefusion conformation may stimulate higher titers of protective antibodies than particles containing F protein in a wild-type or postfusion conformation. These findings indicate that the prefusion F protein assembled into VLPs has the potential to produce a successful RSV vaccine candidate.


Sign in / Sign up

Export Citation Format

Share Document