scholarly journals Time Frames for Neutralization during the Human Immunodeficiency Virus Type 1 Entry Phase, as Monitored in Synchronously Infected Cell Cultures

2007 ◽  
Vol 81 (7) ◽  
pp. 3525-3534 ◽  
Author(s):  
Hillel Haim ◽  
Israel Steiner ◽  
Amos Panet

ABSTRACT Characterization of the neutralizing interaction between antibody and virus is hindered by the nonsynchronized progression of infection in cell cultures. Discrete steps of the viral entry sequence cannot be discerned, and thus, the mode of antibody-mediated interference with virus infectivity remains undefined. Here, we magnetically synchronize the motion and cell attachment of human immunodeficiency virus type 1 (HIV-1) to monitor the progression of neutralization, both in solution and following virus attachment to the cell. By simultaneous transfer of all viral particles from reaction solution with antibody to the cell-bound state, the precise rate of neutralization of cell-free virus could be determined for each antibody. HIV-1 neutralization by both monoclonal and polyclonal antibody preparations followed distinct pseudo-first-order kinetics. For all antibodies, cell types, and HIV-1 strains examined, postattachment interference served a major role in the neutralizing effect. To monitor the progression of postattachment interference, we synchronized the entry process at initiation and measured the escape of cell-bound virus from antibody. We found that different antibodies neutralized the virus over different time frames during the entry phase. Virus was observed to progress through a sequence of shifting sensitivities to different antibodies during entry, suggested here to correlate with the exposure time of the target epitope on receptor-activated viral envelope proteins. Thus, by monitoring the progression of HIV-1 entry under synchronized conditions, we identify a new and significant determinant of antibody neutralization capacity, namely, the time frames for neutralization during the course of the viral entry phase.

1998 ◽  
Vol 72 (11) ◽  
pp. 9337-9344 ◽  
Author(s):  
Yi-jun Zhang ◽  
Tatjana Dragic ◽  
Yunzhen Cao ◽  
Leondios Kostrikis ◽  
Douglas S. Kwon ◽  
...  

ABSTRACT We have tested a panel of pediatric and adult human immunodeficiency virus type 1 (HIV-1) primary isolates for the ability to employ the following proteins as coreceptors during viral entry: CCR1, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, Bonzo, BOB, GPR1, V28, US28, and APJ. Most non-syncytium-inducing isolates could utilize only CCR5. All syncytium-inducing viruses used CXCR4, some also employed V28, and one (DH123) used CCR8 and APJ as well. A longitudinal series of HIV-1 subtype B isolates from an infected infant and its mother utilized Bonzo efficiently, as well as CCR5. The maternal isolates, which were syncytium inducing, also used CXCR4, CCR8, V28, and APJ.


2004 ◽  
Vol 78 (21) ◽  
pp. 11916-11925 ◽  
Author(s):  
Yannick Beauséjour ◽  
Michel J. Tremblay

ABSTRACT We have examined the molecular basis for the selective incorporation of the adhesion molecule ICAM-1 within human immunodeficiency virus type 1 (HIV-1). The process of ICAM-1 incorporation was investigated by using different ICAM-1 constructs in combination with virus capture and immunoprecipitation studies, Western blot and confocal microscopy analyses, and infectivity assays. Experiments conducted with viruses bearing a truncated version of ICAM-1 revealed that the cytoplasmic domain of ICAM-1 governs insertion of this adhesion molecule into HIV-1. Further experiments suggested that there is an association between ICAM-1 and the virus-encoded Pr55Gag polyprotein. This study represents the first demonstration that structural Gag polyproteins play a key role in the uptake of a host-derived cell surface by the virus entity. Taken together, our results indicate that interactions between viral and cellular proteins are responsible for the selective uptake of host ICAM-1 by HIV-1. This observation describes a new strategy by which HIV-1 can modulate its replicative cycle, considering that insertion of ICAM-1 within nascent virions has been shown to increase virus infectivity.


2005 ◽  
Vol 79 (21) ◽  
pp. 13714-13724 ◽  
Author(s):  
Mélanie R. Tardif ◽  
Michel J. Tremblay

ABSTRACT Memory CD4+ T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4+ T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4+ T cells were found to be more susceptible than naive CD4+ T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4+ T cells.


2008 ◽  
Vol 82 (6) ◽  
pp. 2652-2660 ◽  
Author(s):  
April J. Schumacher ◽  
Guylaine Haché ◽  
Donna A. MacDuff ◽  
William L. Brown ◽  
Reuben S. Harris

ABSTRACT Human APOBEC3G and several other APOBEC3 proteins have been shown to inhibit the replication of a variety of retrotransposons and retroviruses. All of these enzymes can deaminate cytosines within single-strand DNA, but the overall importance of this conserved activity in retroelement restriction has been questioned by reports of deaminase-independent mechanisms. Here, three distinct retroelements, a yeast retrotransposon, Ty1, a murine endogenous retrovirus, MusD, and a lentivirus, human immunodeficiency virus type 1 (HIV-1), were used to evaluate the relative contributions of deaminase-dependent and -independent mechanisms. Although human APOBEC3G can restrict the replication of all three of these retroelements, APOBEC3G lacking the catalytic glutamate (E259Q) was clearly defective. This phenotype was particularly clear in experiments with low levels of APOBEC3G expression. In contrast, purposeful overexpression of APOBEC3G-E259Q was able to cause modest to severe reductions in the replication of Ty1, MusD, and HIV-1(ΔVif). The importance of these observations was highlighted by data showing that CEM-SS T-cell lines expressing near-physiologic levels of APOBEC3G-E259Q failed to inhibit the replication of HIV-1(ΔVif), whereas similar levels of wild-type APOBEC3G fully suppressed virus infectivity. Despite the requirement for DNA deamination, uracil DNA glycosylase did not modulate APOBEC3G-dependent restriction of Ty1 or HIV-1(ΔVif), further supporting prior studies indicating that the major uracil excision repair system of cells is not involved. In conclusion, the absolute requirement for the catalytic glutamate of APOBEC3G in Ty1, MusD, and HIV-1 restriction strongly indicates that DNA cytosine deamination is an essential part of the mechanism.


2001 ◽  
Vol 75 (9) ◽  
pp. 4308-4320 ◽  
Author(s):  
Robin L. Cotter ◽  
Jialin Zheng ◽  
Myhanh Che ◽  
Douglas Niemann ◽  
Ying Liu ◽  
...  

ABSTRACT Mononuclear phagocytes (MP) and T lymphocytes play a pivotal role in the host immune response to human immunodeficiency virus type 1 (HIV-1) infection. Regulation of such immune responses can be mediated, in part, through the interaction of the T-lymphocyte-expressed molecule CD40 ligand (CD40L) with its receptor on MP, CD40. Upregulation of CD40L on CD4+ peripheral blood mononuclear cells during advanced HIV-1 disease has previously been reported. Based on this observation, we studied the influence of CD40L-CD40 interactions on MP effector function and viral regulation in vitro. We monitored productive viral infection, cytokine and β-chemokine production, and β-chemokine receptor expression in monocyte-derived macrophages (MDM) after treatment with soluble CD40L. Beginning 1 day after infection and continuing at 3-day intervals, treatment with CD40L inhibited productive HIV-1 infection in MDM in a dose-dependent manner. A concomitant and marked upregulation of β-chemokines (macrophage inhibitory proteins 1α and 1β and RANTES [regulated upon activation normal T-cell expressed and secreted]) and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) was observed in HIV-1-infected and CD40L-treated MDM relative to either infected or activated MDM alone. The addition of antibodies to RANTES or TNF-α led to a partial reversal of the CD40L-mediated inhibition of HIV-1 infection. Surface expression of CD4 and the β-chemokine receptor CCR5 was reduced on MDM in response to treatment with CD40L. In addition, treatment of CCR5- and CD4-transfected 293T cells with secretory products from CD40L-stimulated MDM prior to infection with a CCR5-tropic HIV-1 reporter virus led to inhibition of viral entry. In conclusion, we demonstrate that CD40L-mediated inhibition of viral entry coincides with a broad range of MDM immune effector responses and the down-modulation of CCR5 and CD4 expression.


2008 ◽  
Vol 82 (13) ◽  
pp. 6557-6565 ◽  
Author(s):  
Vanessa Arfi ◽  
Lise Rivière ◽  
Loraine Jarrosson-Wuillème ◽  
Caroline Goujon ◽  
Dominique Rigal ◽  
...  

ABSTRACT Blood-circulating monocytes migrate in tissues in response to danger stimuli and differentiate there into two major actors of the immune system: macrophages and dendritic cells. Given their migratory behavior and their pivotal role in the orchestration of immune responses, it is not surprising that cells of the monocyte lineage are the target of several viruses, including human immunodeficiency virus type 1 (HIV-1). HIV-1 replicates in monocytoid cells to an extent that is influenced by their differentiation status and modulated by exogenous stimulations. Unstimulated monocytes display a relative resistance to HIV infection mostly exerted during the early steps of the viral life cycle. Despite intensive studies, the identity of the affected step remains controversial, although it is generally assumed to take place after viral entry. We reexamine here the early steps of viral infection of unstimulated monocytes using vesicular stomatitis virus G protein-pseudotyped HIV-1 virions. Our data indicate that a first block to the early steps of infection of monocytes with these particles occurs at the level of viral entry. After entry, reverse transcription and integration proceed with extremely slow kinetics rather than being blocked. Once completed, viral DNA molecules delay entry into the nucleus and integration for up to 5 to 6 days. The inefficacy of these steps accounts for the resistance of monocytes to HIV-1 during the early steps of infection.


2003 ◽  
Vol 77 (19) ◽  
pp. 10528-10536 ◽  
Author(s):  
Qi Guo ◽  
Hsu-Tso Ho ◽  
Ira Dicker ◽  
Li Fan ◽  
Nannan Zhou ◽  
...  

ABSTRACT BMS-378806 is a recently discovered small-molecule human immunodeficiency virus type 1 (HIV-1) attachment inhibitor with good antiviral activity and pharmacokinetic properties. Here, we demonstrate that the compound targets viral entry by inhibiting the binding of the HIV-1 envelope gp120 protein to cellular CD4 receptors via a specific and competitive mechanism. BMS-378806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-378806 target site was localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations. Mapping of resistance substitutions to the HIV-1 envelope, and the lack of compound activity against a CD4-independent viral infection confirm the gp120-CD4 interactions as the target in infected cells. BMS-378806 therefore serves as a prototype for this new class of antiretroviral agents and validates gp120 as a viable target for small-molecule inhibitors.


2006 ◽  
Vol 80 (20) ◽  
pp. 10262-10269 ◽  
Author(s):  
Nathalie Arhel ◽  
Sandie Munier ◽  
Philippe Souque ◽  
Karine Mollier ◽  
Pierre Charneau

ABSTRACT We have previously established, using human immunodeficiency virus type 1 (HIV-1) strain LAI, that the HIV-1 central DNA Flap acts as a cis determinant of viral genome nuclear import. Although the impact of the DNA Flap on nuclear import has already found numerous independent confirmations in the context of lentivirus vectors, it has been claimed that it may be nonessential for infectious virus strains LAI, YU-2 (J. D. Dvorin et al., J. Virol. 76:12087-12096, 2002), HXB2, and NL4-3 (A. Limon et al., J. Virol. 76:12078-12086, 2002). We conducted a detailed analysis of virus infectivity using the provirus clones provided by the authors and analogous target cells. In contrast to published data, our results show that all cPPT mutant viruses exhibit reduced infectivity corresponding to a nuclear import defect irrespective of the viral genetic background or target cell.


2009 ◽  
Vol 83 (23) ◽  
pp. 12151-12163 ◽  
Author(s):  
Robert A. Ogert ◽  
Lei Ba ◽  
Yan Hou ◽  
Catherine Buontempo ◽  
Ping Qiu ◽  
...  

ABSTRACT Vicriviroc (VCV) is a small-molecule CCR5 coreceptor antagonist currently in clinical trials for treatment of R5-tropic human immunodeficiency virus type 1 (HIV-1) infection. With this drug in development, identification of resistance mechanisms to VCV is needed to allow optimal outcomes in clinical practice. In this study we further characterized VCV resistance in a lab-adapted, VCV-resistant RU570 virus (RU570-VCVres). We show that K305R, R315Q, and K319T amino acid changes in the V3 loop, along with P437S in C4, completely reproduced the resistance phenotype in a chimeric ADA envelope containing the C2-V5 region from RU570 passage control gp120. The K305R amino acid change primarily impacted the degree of resistance, whereas K319T contributed to both resistance and virus infectivity. The P437S mutation in C4 had more influence on the relative degree of virus infectivity, while the R315Q mutation contributed to the virus concentration-dependent phenotypic resistance pattern observed for RU570-VCVres. RU570-VCVres pseudovirus entry with VCV-bound CCR5 was dramatically reduced by Y10A, D11A, Y14A, and Y15A mutations in the N terminus of CCR5, whereas these mutations had less impact on entry in the absence of VCV. Notably, an additional Q315E/I317F substitution in the crown region of the V3 loop enhanced resistance to VCV, resulting in a stronger dependence on the N terminus for viral entry. By fitting the envelope mutations to a molecular model of a recently described docked N-terminal CCR5 peptide consisting of residues 2 to 15 in complex with HIV-1 gp120 CD4, potential new interactions in gp120 with the N terminus of CCR5 were uncovered. The cumulative results of this study suggest that as the RU570 VCV-resistant virus adapted to use the drug-bound receptor, it also developed an increased reliance on the N terminus of CCR5.


Sign in / Sign up

Export Citation Format

Share Document