scholarly journals Murine Gammaherpesvirus 68 LANA and SOX Homologs Counteract ATM-Driven p53 Activity during Lytic Viral Replication

2015 ◽  
Vol 90 (5) ◽  
pp. 2571-2585 ◽  
Author(s):  
Jeffrey M. Sifford ◽  
James A. Stahl ◽  
Eduardo Salinas ◽  
J. Craig Forrest

ABSTRACTTumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function.IMPORTANCEGammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine gammaherpesvirus 68 induces the activation of tumor suppressor p53. p53 activation was dependent on the DNA damage response kinase ataxia telangiectasia mutated. Although active early after infection, p53 became dominantly inhibited as the infection cycle progressed. Viral inhibition of p53 was mediated by the murine gammaherpesvirus 68 homologs of muSOX and mLANA. The inhibition of the p53 pathway enabled infected cells to evade p53-mediated cell death responses. These data demonstrate that a gammaherpesvirus encodes multiple proteins to limit p53-mediated responses to productive viral infection, which likely benefits acute viral replication and the establishment of chronic infection.

2003 ◽  
Vol 77 (23) ◽  
pp. 12753-12763 ◽  
Author(s):  
Tonia L. Symensma ◽  
DeeAnn Martinez-Guzman ◽  
Qingmei Jia ◽  
Eric Bortz ◽  
Ting-Ting Wu ◽  
...  

ABSTRACT The murine gammaherpesvirus 68 (MHV-68 or γHV-68) model provides many advantages for studying virus-host interactions involved in gammaherpesvirus replication, including the role of cellular responses to infection. We examined the effects of cellular cyclooxygenase-2 (COX-2) and its by-product prostaglandin E2 (PGE2) on MHV-68 gene expression and protein production following de novo infection of cultured cells. Western blot analyses revealed an induction of COX-2 protein in MHV-68-infected cells but not in cells infected with UV-irradiated MHV-68. Luciferase reporter assays demonstrated activation of the COX-2 promoter during MHV-68 replication. Two nonsteroidal anti-inflammatory drugs, a COX-2-specific inhibitor (NS-398) and a COX-1-COX-2 inhibitor (indomethacin), substantially reduced MHV-68 protein production in infected cells. Inhibition of viral protein expression and virion production by NS-398 was reversed in the presence of exogenous PGE2. Global gene expression analysis using an MHV-68 DNA array showed that PGE2 increased production of multiple viral gene products, and NS-398 inhibited production of many of the same genes. These studies suggest that COX-2 activity and PGE2 production may play significant roles during MHV-68 de novo infection.


2008 ◽  
Vol 83 (5) ◽  
pp. 2321-2326 ◽  
Author(s):  
Anna R. Cliffe ◽  
Anthony A. Nash ◽  
Bernadette M. Dutia

ABSTRACT Noncoding RNAs are a feature of many herpesvirus genomes. They include microRNAs, whose function is the subject of intense investigation, in addition to longer RNA molecules such as the Epstein-Barr virus-encoded RNAs and herpesvirus saimiri U RNAs, which have been known for some time but whose function is still not well defined. Murine gammaherpesvirus 68 (MHV-68) encodes eight viral tRNA-like molecules (vtRNAs) of unknown function. Investigating the kinetics of expression of the vtRNAs, we observed that they were present directly after infection with the virus. This strongly suggested that vtRNAs were part of the virion structure, which was confirmed by their detection within various purified, RNase-treated preparations. Although both viral and cellular mRNAs were also detected within the MHV-68 virion, the major RNA species present were small RNAs of around 70 nucleotides in length. Interestingly, incorporation of viral mRNA was not related to the relative abundance in infected cells, as M11 mRNA, which is present at low abundance, was found in virions. MHV-76, which lacks the genes encoding the vtRNAs, also incorporated small RNA molecules within the virion, suggesting a requirement for these molecules for virion maturation. In productively infected cells the vtRNAs localized predominantly within the cytoplasm, although they also exhibited a globular pattern of nuclear staining. Their presence in the cytoplasm is consistent with interaction with virion components prior to maturation of virus particles. The significance of these findings for virion architecture and function is discussed.


2004 ◽  
Vol 78 (23) ◽  
pp. 13370-13375 ◽  
Author(s):  
Filipa B. Lopes ◽  
Susanna Colaco ◽  
Janet S. May ◽  
Philip G. Stevenson

ABSTRACT Murine gammaherpesvirus 68 (MHV-68) glycoprotein B (gB) was identified in purified virions by immunoblotting, immunoprecipitation, and immunoelectron microscopy. It was synthesized as a 120-kDa precursor in infected cells and cleaved into 65-kDa and 55-kDa disulfide-linked subunits close to the time of virion release. The N-linked glycans on the cleaved, virion gB remained partially endoglycosidase H sensitive. The processing of MHV-68 gB therefore appears similar to that of Kaposi's sarcoma-associated herpesvirus gB and human cytomegalovirus gB.


2003 ◽  
Vol 77 (19) ◽  
pp. 10488-10503 ◽  
Author(s):  
DeeAnn Martinez-Guzman ◽  
Tammy Rickabaugh ◽  
Ting-Ting Wu ◽  
Helen Brown ◽  
Steven Cole ◽  
...  

ABSTRACT Murine gammaherpesvirus 68 (MHV-68 [also referred to as γHV68]) is phylogenetically related to Kaposi's sarcoma-associated herpesvirus (KSHV [also referred to as HHV-8]) and Epstein-Barr virus (EBV). However, unlike KSHV or EBV, MHV-68 readily infects fibroblast and epithelial cell lines derived from several mammalian species, providing a system to study productive and latent infections as well as reactivation of gammaherpesviruses in vivo and in vitro. To carry out rapid genome-wide analysis of MHV-68 gene expression, we made DNA arrays containing nearly all of the known and predicted open reading frames (ORFs) of the virus. RNA obtained from an MHV-68 latently infected cell line, from cells lytically infected with MHV-68 in culture, and from the lung tissue of infected mice was used to probe the MHV-68 arrays. Using a tightly latent B-cell line (S11E), the MHV-68 latent transcription program was quantitatively described. Using BHK-21 cells and infected mice, we demonstrated that latent genes are transcribed during lytic replication and are relatively independent of de novo protein synthesis. We determined that the transcription profiles at the peak of lytic gene expression are similar in cultured fibroblast and in the lung of infected mice. Finally, the MHV-68 DNA arrays were used to examine the gene expression profile of a recombinant virus that overexpresses replication and transcription activator (RTA), C-RTA/MHV-68, during lytic replication in cell culture. The recombinant virus replicates faster then the parental strain and the DNA arrays revealed that nearly every MHV-68 ORF examined was activated by RTA overexpression. Examination of the gene expression patterns of C-RTA/MHV-68 over a time course led to the finding that the M3 promoter is RTA responsive in the absence of other viral factors.


1999 ◽  
Vol 73 (9) ◽  
pp. 7658-7670 ◽  
Author(s):  
Sharookh B. Kapadia ◽  
Hector Molina ◽  
Victor van Berkel ◽  
Samuel H. Speck ◽  
Herbert W. Virgin

ABSTRACT Sequence analysis of the murine gammaherpesvirus 68 (γHV68) genome revealed an open reading frame (gene 4) which is homologous to a family of proteins known as the regulators of complement activation (RCA proteins) (H. W. Virgin, P. Latreille, P. Wamsley, K. Hallsworth, K. E. Weck, A. J. Dal Canto, and S. H. Speck, J. Virol. 71:5894–5904, 1997). The predicted gene 4 product has homology to other virally encoded RCA homologs, as well as to the complement-regulatory proteins decay-accelerating factor and membrane cofactor protein. Analyses by Northern blotting and rapid amplification of cDNA ends revealed that gene 4 is transcribed as a 5.2-kb bicistronic transcript of the late kinetic class. Three γHV68 RCA protein isoforms (60 to 65 kDa, 50 to 55 kDa, and 40 to 45 kDa) were detected by Western blotting of infected murine NIH 3T12 fibroblast cells. A soluble 40- to 45-kDa isoform was detected in the supernatants of virally infected cells. Flow cytometric analysis revealed that the γHV68 RCA protein was expressed on the surfaces of infected cells. Supernatants from virally infected cells contained an activity that inhibited murine complement activation as measured by inhibition of C3 deposition on activated zymosan particles. Recombinant γHV68 RCA protein, containing the four conserved short consensus repeats, inhibited murine C3 deposition on zymosan via both classical and alternative pathways and inhibited deposition of human C3 on activated zymosan particles. Expression of this inhibitor of complement activation, both at the cell surface and in the fluid phase, may be important for γHV68 pathogenesis via the inhibition of innate and adaptive immunity.


2009 ◽  
Vol 83 (18) ◽  
pp. 9554-9566 ◽  
Author(s):  
Sergio Covarrubias ◽  
Justin M. Richner ◽  
Karen Clyde ◽  
Yeon J. Lee ◽  
Britt A. Glaunsinger

ABSTRACT Lytic infection with the two human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), leads to significant depletion of the cellular transcriptome. This host shutoff phenotype is driven by the conserved herpesviral alkaline exonuclease, termed SOX in KSHV and BGLF5 in EBV, which in gammaherpesviruses has evolved the genetically separable ability to target cellular mRNA. We now show that host shutoff is also a prominent consequence of murine gammaherpesvirus 68 (MHV68) infection, which is widely used as a model system to study pathogenesis of these viruses in vivo. The effector of MHV68-induced host shutoff is its SOX homolog, here termed muSOX. There is remarkable functional conservation of muSOX host shutoff activities with those of KSHV SOX, including the recently described ability of SOX to induce mRNA hyperadenylation in the nucleus as well as cause nuclear relocalization of the poly(A) binding protein. SOX and muSOX localize to both the nucleus and cytoplasm of infected cells. Using spatially restricted variants of these proteins, we go on to demonstrate that all known host shutoff-related activities of SOX and muSOX are orchestrated exclusively from the cytoplasm. These results have important mechanistic implications for how SOX and muSOX target nascent cellular transcripts in the nucleus. Furthermore, our findings establish MHV68 as a new, genetically tractable model to study host shutoff.


2006 ◽  
Vol 81 (1) ◽  
pp. 280-291 ◽  
Author(s):  
Laurent Gillet ◽  
Janet S. May ◽  
Susanna Colaco ◽  
Philip G. Stevenson

ABSTRACT The herpesvirus glycoprotein H (gH) and gL associate to form a heterodimer that plays a central role in virus-driven membrane fusion. When archetypal alpha- or betaherpesviruses lack gL, gH misfolds and progeny virions are noninfectious. In order to define the role that gL plays in gamma-2 herpesvirus infections, we disrupted its coding sequence in murine gammaherpesvirus-68 (MHV-68). MHV-68 lacking gL folded gH into a conformation antigenically distinct from the form that normally predominates on infected cells. gL-deficient virions bound less well than the wild type to epithelial cells and fibroblasts. However, they still incorporated gH and remained infectious. The cell-to-cell spread of gL-deficient viruses was remarkably normal, as was infection, dissemination, and latency establishment in vivo. Viral membrane fusion was therefore gL independent. The major function of gL appeared to be allowing gH to participate in cell binding prior to membrane fusion. This function was most important for the entry of MHV-68 virions into fibroblasts and epithelial cells.


2009 ◽  
Vol 83 (13) ◽  
pp. 6484-6493 ◽  
Author(s):  
Christopher M. Collins ◽  
Jeremy M. Boss ◽  
Samuel H. Speck

ABSTRACT Infection of inbred mice with murine gammaherpesvirus 68 (MHV68) has proven to be a powerful tool to study gammaherpesvirus pathogenesis. However, one of the limitations of this system has been the inability to directly detect infected cells harvested from infected animals. To address this issue, we generated a transgenic virus that expresses the enhanced yellow fluorescent protein (YFP), driven by the human cytomegalovirus immediate-early promoter and enhancer, from a neutral locus within the viral genome. This virus, MHV68-YFP, replicated and established latency as efficiently as did the wild-type virus. During the early phase of viral latency, MHV68-YFP efficiently marked latently infected cells in the spleen after intranasal inoculation. Staining splenocytes for expression of various surface markers demonstrated the presence of MHV68 in distinct populations of splenic B cells harboring MHV68. Notably, these analyses also revealed that markers used to discriminate between newly formed, follicular and marginal zone B cells may not be reliable for phenotyping B cells harboring MHV68 since virus infection appears to modulate cell surface expression levels of CD21 and CD23. However, as expected, we observed that the overwhelming majority of latently infected B cells at the peak of latency exhibited a germinal center phenotype. These analyses also demonstrated that a significant percentage of MHV68-infected splenocytes at the peak of viral latency are plasma cells (ca. 15% at day 14 and ca. 8% at day 18). Notably, the frequency of virus-infected plasma cells correlated well with the frequency of splenocytes that spontaneously reactivate virus upon explant. Finally, we observed that the efficiency of marking latently infected B cells with the MHV68-YFP recombinant virus declined at later times postinfection, likely due to shut down of transgene expression, and indicating that the utility of this marking strategy is currently limited to the early stages of virus infection.


2001 ◽  
Vol 75 (11) ◽  
pp. 5315-5327 ◽  
Author(s):  
Alastair I. Macrae ◽  
Bernadette M. Dutia ◽  
Steven Milligan ◽  
David G. Brownstein ◽  
Deborah J. Allen ◽  
...  

ABSTRACT Infection of mice by murine gammaherpesvirus 68 (MHV-68) is an excellent small-animal model of gammaherpesvirus pathogenesis in a natural host. We have carried out comparative studies of another herpesvirus, murine herpesvirus 76 (MHV-76), which was isolated at the same time as MHV-68 but from a different murid host, the yellow-necked mouse (Apodemus flavicollis). Molecular analyses revealed that the MHV-76 genome is essentially identical to that of MHV-68, except for deletion of 9,538 bp at the left end of the unique region. MHV-76 is therefore a deletion mutant that lacks four genes unique to MHV-68 (M1, M2,M3, and M4) as well as the eight viral tRNA-like genes. Replication of MHV-76 in cell culture was identical to that of MHV-68. However, following infection of mice, MHV-76 was cleared more rapidly from the lungs. In line with this, there was an increased inflammatory response in lungs with MHV-76. Splenomegaly was also significantly reduced following MHV-76 infection, and much less latent MHV-76 was detected in the spleen. Nevertheless, MHV-76 maintained long-term latency in the lungs and spleen. We utilized a cosmid containing the left end of the MHV-68 genome to reinsert the deleted sequence into MHV-76 by recombination in infected cells, and we isolated a rescuant virus designated MHV-76(cA8+)4 which was ostensibly genetically identical to MHV-68. The growth properties of the rescuant in infected mice were identical to those of MHV-68. These results demonstrate that genetic elements at the left end of the unique region of the MHV-68 genome play vital roles in host evasion and are critical to the development of splenic pathology.


2009 ◽  
Vol 84 (4) ◽  
pp. 1881-1890 ◽  
Author(s):  
Xudong Li ◽  
Jun Feng ◽  
Shijia Chen ◽  
Li Peng ◽  
Wei-Wu He ◽  
...  

ABSTRACT How cellular factors regulate gammaherpesvirus lytic replication is not well understood. Here, through functional screening of a cellular kinase expression library, we identified mitogen-activated protein kinase kinase kinase 8 (MAP3K8/Tpl2) as a positive regulator of murine gammaherpesvirus 68 (MHV-68 or γHV-68) lytic gene expression and replication. Tpl2 enhances MHV-68 lytic replication by upregulating lytic gene expression and promoter activities of viral lytic genes, including RTA and open reading frame 57 (ORF57). By screening a cellular transcription factor library, we identified the Fos AP-1 transcription factor as a downstream factor that is both necessary and sufficient for mediating the enhancement of MHV-68 lytic replication by Tpl2. In addition, Tpl2 stimulates the promoter activities of key viral lytic genes, including RTA and ORF57, in an AP-1-dependent manner. We identified an AP-1-responsive element on the MHV-68 RTA promoter as the cis element mediating the upregulation of RTA promoter activity by Tpl2. MHV-68 lytic infection upregulates Fos expression, AP-1 activity, and RTA promoter activity in a Tpl2-dependent manner. We constructed a mutant MHV-68 virus that abolished this AP-1-responsive element. This mutant virus exhibited attenuated lytic replication kinetics, indicative of a critical role of this AP-1-responsive element during lytic replication. Moreover, Tpl2 knockdown inhibited the lytic replication of wild-type MHV-68 (MHV-68-WT) but not that of the MHV-68 mutant virus, indicating that endogenous Tpl2 promotes efficient virus lytic replication through AP-1-dependent upregulation of RTA expression. In summary, through tandem functional screens, we identified the Tpl2/AP-1 signaling transduction pathway as a positive regulator of MHV-68 lytic replication.


Sign in / Sign up

Export Citation Format

Share Document