scholarly journals Fighting Fire with Fire: Endogenous Retrovirus Envelopes as Restriction Factors

2015 ◽  
Vol 89 (8) ◽  
pp. 4047-4050 ◽  
Author(s):  
Ray Malfavon-Borja ◽  
Cédric Feschotte

A considerable portion of vertebrate genomes are made up of endogenous retroviruses (ERVs). While aberrant or uncontrolled ERV expression has been perceived as a potential cause of disease, there is mounting evidence that some ERVs have become integral components of normal host development and physiology. Here, we revisit the longstanding concept that some of the gene products encoded by ERVs and other endogenous viral elements may offer to the host protection against viral infection. Notably, proteins produced fromenvelope(env) genes have been shown to act as restriction factors against related exogenous retroviruses in chickens, sheep, mice, and cats. Based on the proposed mode of restriction and the domain architecture of known antiretroviralenv, we argue that many moreenvgene-derived restriction factors await discovery in vertebrate genomes, including the human genome.

2019 ◽  
Vol 93 (20) ◽  
Author(s):  
Rebecca S. Treger ◽  
Maria Tokuyama ◽  
Huiping Dong ◽  
Karen Salas-Briceno ◽  
Susan R. Ross ◽  
...  

ABSTRACT Endogenous retroviruses (ERV) are found throughout vertebrate genomes, and failure to silence their activation can have deleterious consequences on the host. Mutation and subsequent disruption of ERV loci is therefore an indispensable component of the cell-intrinsic defenses that maintain the integrity of the host genome. Abundant in vitro and in silico evidence have revealed that APOBEC3 cytidine-deaminases, including human APOBEC3G (hA3G), can potently restrict retrotransposition; yet, in vivo data demonstrating such activity is lacking, since no replication-competent human ERV have been identified. In mice deficient for Toll-like receptor 7 (TLR7), transcribed ERV loci can recombine and generate infectious ERV. In this study, we show that ectopic expression of hA3G can prevent the emergence of replication-competent, infectious ERV in Tlr7−/− mice. Mice encode one copy of Apobec3 in their genome. ERV reactivation in Tlr7−/− mice was comparable in the presence or absence of Apobec3. In contrast, expression of a human APOBEC3G transgene abrogated emergence of infectious ERV in the Tlr7−/− background. No ERV RNA was detected in the plasma of hA3G+ Apobec3−/− Tlr7−/− mice, and infectious ERV virions could not be amplified through coculture with permissive cells. These data reveal that hA3G can potently restrict active ERV in vivo and suggest that expansion of the APOBEC3 locus in primates may have helped to provide for the continued restraint of ERV in the human genome. IMPORTANCE Although APOBEC3 proteins are known to be important antiviral restriction factors in both mice and humans, their roles in the restriction of endogenous retroviruses (ERV) have been limited to in vitro studies. Here, we report that human APOBEC3G expressed as a transgene in mice prevents the emergence of infectious ERV from endogenous loci. This study reveals that APOBEC3G can powerfully restrict active retrotransposons in vivo and demonstrates how transgenic mice can be used to investigate host mechanisms that inhibit retrotransposons and reinforce genomic integrity.


2007 ◽  
Vol 81 (20) ◽  
pp. 11441-11451 ◽  
Author(s):  
Frederick Arnaud ◽  
Pablo R. Murcia ◽  
Massimo Palmarini

ABSTRACT The host has developed during evolution a variety of “restriction factors” to fight retroviral infections. We investigated the mechanisms of a unique viral block acting at late stages of the retrovirus replication cycle. The sheep genome is colonized by several copies of endogenous retroviruses, known as enJSRVs, which are highly related to the oncogenic jaagsiekte sheep retrovirus (JSRV). enJS56A1, one of the enJSRV proviruses, can act as a restriction factor by blocking viral particles release of the exogenous JSRV. We show that in the absence of enJS56A1 expression, the JSRV Gag (the retroviral internal structural polyprotein) targets initially the pericentriolar region, in a dynein and microtubule-dependent fashion, and then colocalizes with the recycling endosomes. Indeed, by inhibiting the endocytosis and trafficking of recycling endosomes we hampered JSRV exit from the cell. Using a variety of approaches, we show that enJS56A1 and JSRV Gag interact soon after synthesis and before pericentriolar/recycling endosome targeting of the latter. The transdominant enJS56A1 induces intracellular Gag accumulation in microaggregates that colocalize with the aggresome marker GFP-250 but develop into bona fide aggresomes only when the proteasomal machinery is inhibited. The data argue that dominant-negative proteins can modify the overall structure of Gag multimers/viral particles hampering the interaction of the latter with the cellular trafficking machinery.


2019 ◽  
Author(s):  
Sylvia E. J. Fischer ◽  
Gary Ruvkun

ABSTRACTEndogenous retroviruses and LTR retrotransposons are mobile genetic elements that are closely related to retroviruses. Desilenced endogenous retroviruses are associated with human autoimmune disorders and neurodegenerative diseases. C. elegans and related Caenorhabdites contain LTR retrotransposons and, as described here, numerous integrated viral genes including viral envelope genes that are part of LTR retrotransposons. We found that both LTR retrotransposons and endogenous viral elements are silenced by ADARs (adenosine deaminases acting on double-stranded RNA (dsRNA)) together with the endogenous RNAi factor ERI-6/7, a homolog of Mov10 helicase, a retrotransposon and retrovirus restriction factor in human. siRNAs corresponding to integrated viral genes and LTR retrotransposons, but not to DNA transposons, are dependent on the ADARs and ERI-6/7; on the contrary, siRNAs corresponding to palindromic repeats are increased in adar-eri mutants because of an antiviral RNAi response to dsRNA. Silencing of LTR retrotransposons is dependent on downstream RNAi factors and P granule components but is independent of the viral sensor DRH-1/RIG-I and the nuclear Argonaute NRDE-3. The activation of retrotransposons in the ADAR- and ERI-6/7/MOV10-defective mutant is associated with the induction of the Unfolded Protein Response (UPR), a common response to viral infection. The overlap between genes induced upon viral infection and infection with intracellular pathogens, and genes co-expressed with retrotransposons, suggests that there is a common response to different types of foreign elements that includes a response to proteotoxicity presumably caused by the burden of replicating pathogens and expressed retrotransposons.SIGNIFICANCESilencing of transposable elements and viruses is critical for the maintenance of genome integrity, cellular homeostasis and organismal health. Here we describe multiple factors that control different types of transposable elements, providing insight into how they are regulated. We also identify stress response pathways that are triggered upon mis-regulation of these transposable elements. The conservation of these factors and pathways in human suggests that our studies in C. elegans can provide general insight into the regulation of and response to transposable elements and viruses.


2018 ◽  
Author(s):  
Rebecca S. Treger ◽  
Maria Tokuyama ◽  
Huiping Dong ◽  
Susan R. Ross ◽  
Yong Kong ◽  
...  

AbstractEndogenous retroviruses (ERV) are found throughout vertebrate genomes and failure to silence their activation can have deleterious consequences on the host. Introduction of mutations that subsequently prevent transcription of ERV loci is therefore an indispensable cell-intrinsic defense mechanism that maintains the integrity of the host genome. Abundant in vitro and in silico evidence have revealed that APOBEC3 cytidine-deaminases, including human APOBEC3G (hA3G) can potently restrict retrotransposition; yet in vivo data demonstrating such activity is lacking, particularly since no replication competent human ERV has been identified. In mice deficient for Toll-like receptor 7 (TLR7), transcribed ERV loci can recombine and generate infectious ERV. In this study, we show that mice deficient in the only copy of Apobec3 in the genome did not have spontaneous reactivation of ERVs, nor elevated ERV reactivation when crossed to Tlr7-/- mice. In contrast, expression of a human APOBEC3G transgene abrogated emergence of infectious ERV in the Tlr7-/- background. No ERV RNA was detected in the plasma of hA3G+Apobec3-/-Tlr7-/- mice, and infectious ERV virions could not be amplified through co-culture with permissive cells. These data reveal that hA3G can potently restrict active ERV in vivo, and suggest that the expansion of the APOBEC3 locus in primates has helped restrict ERV reactivation in the human genome.ImportanceAlthough APOBEC3 proteins are known to be important antiviral restriction factors in both mice and humans, their roles in the restriction of endogenous retroviruses (ERV) have been limited to in vitro studies. Here, we report that human APOBEC3G expressed as a transgene in mice prevents the emergence of infectious ERV from endogenous loci. This study reveals that APOBEC3G can powerfully restrict active retrotransposons in vivo and demonstrates how ectopic expression of human factors in transgenic mouse models can be used to investigate host mechanisms that inhibit retrotransposons and reinforce genomic integrity.


2020 ◽  
Vol 117 (11) ◽  
pp. 5987-5996 ◽  
Author(s):  
Sylvia E. J. Fischer ◽  
Gary Ruvkun

Endogenous retroviruses and long terminal repeat (LTR) retrotransposons are mobile genetic elements that are closely related to retroviruses. Desilenced endogenous retroviruses are associated with human autoimmune disorders and neurodegenerative diseases.Caenorhabditis elegansand relatedCaenorhabditisspp. contain LTR retrotransposons and, as described here, numerous integrated viral genes including viral envelope genes that are part of LTR retrotransposons. We found that both LTR retrotransposons and endogenous viral elements are silenced by ADARs [adenosine deaminases acting on double-stranded RNA (dsRNA)] together with the endogenous RNA interference (RNAi) factor ERI-6/7, a homolog of MOV10 helicase, a retrotransposon and retrovirus restriction factor in human. siRNAs corresponding to integrated viral genes and LTR retrotransposons, but not to DNA transposons, are dependent on the ADARs and ERI-6/7. siRNAs corresponding to palindromic repeats are independent of the ADARs and ERI-6/7, and are in fact increased inadar-anderi-6/7–defective mutants because of an antiviral RNAi response to dsRNA. Silencing of LTR retrotransposons is dependent on downstream RNAi factors and P granule components but is independent of the viral sensor DRH-1/RIG-I and the nuclear Argonaute NRDE-3. The activation of retrotransposons in the ADAR- and ERI-6/7/MOV10–defective mutant is associated with the induction of the unfolded protein response (UPR), a common response to viral infection. The overlap between genes induced upon viral infection and infection with intracellular pathogens and genes coexpressed with retrotransposons suggests that there is a common response to different types of foreign elements that includes a response to proteotoxicity presumably caused by the burden of replicating pathogens and expressed retrotransposons.


2014 ◽  
Vol 63 (2) ◽  
pp. 183-190
Author(s):  
URSZULA MAZUREK ◽  
MALGORZATA W. KIMSA ◽  
BARBARA STRZALKA-MROZIK ◽  
MAGDALENA C. KIMSA ◽  
CELINA KRUSZNIEWSKA-RAJS ◽  
...  

Microarray analysis has been used for screening genes involved in specific biological processes. Many studies have shown that restriction factors may play an important role in xenotransplantation safety, but it is still unclear whether porcine endogenous retroviruses (PERVs) may be inhibited by these factors. Therefore, the present study focused on the microarray analysis retroviral restriction factors gene expression in normal human dermal fibroblasts (NHDFs) in response to PERVs. PERV infectivity was analyzed using a co-culture system of NHDFs and porcine kidney epithelial cells (PK15 cell line). Detection of the copy number of PERV A, PERV B DNA and PERV A, PERV B RNA was performed using real-time Q-PCR and QRT-PCR. The expression of retroviral restriction factor genes was compared between PERV-infected and uninfected NHDF cells using oligonucleotide microarray. The up-regulated transcripts were recorded for two differentially expressed genes (TRIM1, TRIM16) with the use of GeneSpring platform and Significance Analysis of Microarrays. In conclusion, our results suggest that the TRIM family may play an important role in innate immunity to PERV infection. These results can allow a better understanding of restriction mechanism of PERV infection and probably design molecularly targeted therapies in the future. Moreover, knowledge of retroviral restriction factor gene expression in human cells may help to uncover strategies for determining their exact function. Microarray analyses seem to be promising in biological and biomedical studies, however, these results should be further confirmed by research conducted at the protein level.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1999
Author(s):  
Annacarmen Petrizzo ◽  
Concetta Ragone ◽  
Beatrice Cavalluzzo ◽  
Angela Mauriello ◽  
Carmen Manolio ◽  
...  

Human endogenous retroviruses (HERVs) derive from ancestral exogenous retroviruses whose genetic material has been integrated in our germline DNA. Several lines of evidence indicate that cancer immunotherapy may benefit from HERV reactivation, which can be induced either by drugs or by cellular changes occurring in tumor cells. Indeed, several studies indicate that HERV proviral DNA can be transcribed either to double-stranded RNA (dsRNA) that is sensed as a “danger signal” by pattern recognition receptors (PRRs), leading to a viral mimicry state, or to mRNA that is translated into proteins that may contribute to the landscape of tumor-specific antigens (TSAs). Alternatively, HERV reactivation is associated with the expression of long noncoding RNAs (lncRNAs). In this review, we will highlight recent findings on HERV reactivation in cancer and its implications for cancer immunotherapy.


2000 ◽  
Vol 74 (8) ◽  
pp. 3715-3730 ◽  
Author(s):  
Michael Tristem

ABSTRACT Human endogenous retroviruses (HERVs) were first identified almost 20 years ago, and since then numerous families have been described. It has, however, been difficult to obtain a good estimate of both the total number of independently derived families and their relationship to each other as well as to other members of the familyRetroviridae. In this study, I used sequence data derived from over 150 novel HERVs, obtained from the Human Genome Mapping Project database, and a variety of recently identified nonhuman retroviruses to classify the HERVs into 22 independently acquired families. Of these, 17 families were loosely assigned to the class I HERVs, 3 to the class II HERVs and 2 to the class III HERVs. Many of these families have been identified previously, but six are described here for the first time and another four, for which only partial sequence information was previously available, were further characterized. Members of each of the 10 families are defective, and calculation of their integration dates suggested that most of them are likely to have been present within the human lineage since it diverged from the Old World monkeys more than 25 million years ago.


2000 ◽  
Vol 74 (16) ◽  
pp. 7687-7690 ◽  
Author(s):  
Juergen H. Blusch ◽  
Clive Patience ◽  
Yasuhiro Takeuchi ◽  
Christian Templin ◽  
Christian Roos ◽  
...  

ABSTRACT The ongoing shortage of human donor organs for transplantation has catalyzed new interest in the application of pig organs (xenotransplantation). One of the biggest concerns about the transplantation of porcine grafts into humans is the transmission of pig endogenous retroviruses (PERV) to the recipients or even to other members of the community. Although nonhuman primate models are excellently suited to mimic clinical xenotransplantation settings, their value for risk assessment of PERV transmission at xenotransplantation is questionable since all of the primate cell lines tested so far have been found to be nonpermissive for PERV infection. Here we demonstrate that human, gorilla, and Papio hamadryas primary skin fibroblasts and also baboon B-cell lines are permissive for PERV infection. This suggests that a reevaluation of the suitability of the baboon model for risk assessment in xenotransplantation is critical at this point.


2019 ◽  
Author(s):  
Özgen Deniz ◽  
Mamataz Ahmed ◽  
Christopher D. Todd ◽  
Ana Rio-Machin ◽  
Mark A. Dawson ◽  
...  

AbstractAcute myeloid leukemia (AML) is a highly aggressive hematopoietic malignancy, defined by a series of genetic and epigenetic alterations, which result in deregulation of transcriptional networks. One understudied but important source of transcriptional regulators are transposable elements (TEs), which are widespread throughout the human genome. Aberrant usage of these sequences could therefore contribute to oncogenic transcriptional circuits. However, the regulatory influence of TEs and their links to disease pathogenesis remain unexplored in AML. Using epigenomic data from AML primary samples and leukemia cell lines, we identified six endogenous retrovirus (ERV) families with AML-associated enhancer chromatin signatures that are enriched in binding of key regulators of hematopoiesis and AML pathogenesis. Using both CRISPR-mediated locus-specific genetic editing and simultaneous epigenetic silencing of multiple ERVs, we demonstrate that ERV deregulation directly alters the expression of adjacent genes in AML. Strikingly, deletion or epigenetic silencing of an ERV-derived enhancer suppressed cell growth by inducing apoptosis in leukemia cell lines. Our work reveals that ERVs are a previously unappreciated source of AML enhancers that have the potential to play key roles in leukemogenesis. We suggest that ERV activation provides an additional layer of gene regulation in AML that may be exploited by cancer cells to help drive tumour heterogeneity and evolution.


Sign in / Sign up

Export Citation Format

Share Document