Comparison of human cytomegalovirus obtained by glycine extraction and by sonic disruption of infected cells.

1967 ◽  
Vol 1 (1) ◽  
pp. 241-243 ◽  
Author(s):  
F Probstmeyer ◽  
M Benyesh-Melnick ◽  
R M McCombs
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Timo W. M. De Groof ◽  
Elizabeth G. Elder ◽  
Eleanor Y. Lim ◽  
Raimond Heukers ◽  
Nick D. Bergkamp ◽  
...  

AbstractLatent human cytomegalovirus (HCMV) infection is characterized by limited gene expression, making latent HCMV infections refractory to current treatments targeting viral replication. However, reactivation of latent HCMV in immunosuppressed solid organ and stem cell transplant patients often results in morbidity. Here, we report the killing of latently infected cells via a virus-specific nanobody (VUN100bv) that partially inhibits signaling of the viral receptor US28. VUN100bv reactivates immediate early gene expression in latently infected cells without inducing virus production. This allows recognition and killing of latently infected monocytes by autologous cytotoxic T lymphocytes from HCMV-seropositive individuals, which could serve as a therapy to reduce the HCMV latent reservoir of transplant patients.


2009 ◽  
Vol 83 (19) ◽  
pp. 10016-10027 ◽  
Author(s):  
Melissa P. Stropes ◽  
Olivia D. Schneider ◽  
William A. Zagorski ◽  
Jeanette L. C. Miller ◽  
William E. Miller

ABSTRACT The human cytomegalovirus (HCMV)-encoded G-protein-coupled receptor (GPCR) US28 is a potent activator of a number of signaling pathways in HCMV-infected cells. The intracellular carboxy-terminal domain of US28 contains residues critical for the regulation of US28 signaling in heterologous expression systems; however, the role that this domain plays during HCMV infection remains unknown. For this study, we constructed an HCMV recombinant virus encoding a carboxy-terminal domain truncation mutant of US28, FLAG-US28/1-314, to investigate the role that this domain plays in US28 signaling. We demonstrate that US28/1-314 exhibits a more potent phospholipase C-β (PLC-β) signal than does wild-type US28, indicating that the carboxy-terminal domain plays an important role in regulating agonist-independent signaling in infected cells. Moreover, HMCV-infected cells expressing the US28/1-314 mutant exhibit a prolonged calcium signal in response to CCL5, indicating that the US28 carboxy-terminal domain also regulates agonist-dependent signaling. Finally, while the chemokine CX3CL1 behaves as an inverse agonist or inhibitor of constitutive US28 signaling to PLC-β, we demonstrate that CX3CL1 functions as an agonist with regard to US28-stimulated calcium release. This study is the first to demonstrate that the carboxy terminus of US28 controls US28 signaling in the context of HCMV infection and indicates that chemokines such as CX3CL1 can decrease constitutive US28 signals and yet simultaneously promote nonconstitutive US28 signals.


1981 ◽  
Vol 56 (1) ◽  
pp. 1-11 ◽  
Author(s):  
C. C. Chua ◽  
T. H. Carter ◽  
S. St. Jeor

Virology ◽  
1996 ◽  
Vol 224 (1) ◽  
pp. 150-160 ◽  
Author(s):  
Wade A. Bresnahan ◽  
Istvan Boldogh ◽  
E.Aubrey Thompson ◽  
Thomas Albrecht

2009 ◽  
Vol 84 (5) ◽  
pp. 2597-2609 ◽  
Author(s):  
Brent J. Ryckman ◽  
Marie C. Chase ◽  
David C. Johnson

ABSTRACT Human cytomegalovirus (HCMV) produces the following two gH/gL complexes: gH/gL/gO and gH/gL/UL128-131. Entry into epithelial and endothelial cells requires gH/gL/UL128-131, and we have provided evidence that gH/gL/UL128-131 binds saturable epithelial cell receptors to mediate entry. HCMV does not require gH/gL/UL128-131 to enter fibroblasts, and laboratory adaptation to fibroblasts results in mutations in the UL128-131 genes, abolishing infection of epithelial and endothelial cells. HCMV gO-null mutants produce very small plaques on fibroblasts yet can spread on endothelial cells. Thus, one prevailing model suggests that gH/gL/gO mediates infection of fibroblasts, while gH/gL/UL128-131 mediates entry into epithelial/endothelial cells. Most biochemical studies of gO have involved the HCMV lab strain AD169, which does not assemble gH/gL/UL128-131 complexes. We examined gO produced by the low-passage clinical HCMV strain TR. Surprisingly, TR gO was not detected in purified extracellular virus particles. In TR-infected cells, gO remained sensitive to endoglycosidase H, suggesting that the protein was not exported from the endoplasmic reticulum (ER). However, TR gO interacted with gH/gL in the ER and promoted export of gH/gL from the ER to the Golgi apparatus. Pulse-chase experiments showed that a fraction of gO remained bound to gH/gL for relatively long periods, but gO eventually dissociated or was degraded and was not found in extracellular virions or secreted from cells. The accompanying report by P. T. Wille et al. (J. Virol., 84:2585-2596, 2010) showed that a TR gO-null mutant failed to incorporate gH/gL into virions and that the mutant was unable to enter fibroblasts and epithelial and endothelial cells. We concluded that gO acts as a molecular chaperone, increasing gH/gL ER export and incorporation into virions. It appears that gO competes with UL128-131 for binding onto gH/gL but is released from gH/gL, so that gH/gL (lacking UL128-131) is incorporated into virions. Thus, our revised model suggests that both gH/gL and gH/gL/UL128-131 are required for entry into epithelial and endothelial cells.


2002 ◽  
Vol 76 (3) ◽  
pp. 1450-1460 ◽  
Author(s):  
S. Spaderna ◽  
H. Blessing ◽  
E. Bogner ◽  
W. Britt ◽  
M. Mach

ABSTRACT Human cytomegalovirus (HCMV) has a coding capacity for glycoproteins which far exceeds that of other herpesviruses. Few of these proteins have been characterized. We have investigated the gene product(s) of reading frame 10, which is present in both the internal and terminal repeat regions of HCMV strain AD169 and only once in clinical isolates. The putative protein product is a 171-amino-acid glycoprotein with a theoretical mass of 20.5 kDa. We characterized the protein encoded by this reading frame in the laboratory strain AD169 and a recent isolate, TB40E. The results from both strains were comparable. Northern blot analyses showed that the gene was transcribed with early/late kinetics. Two proteins of 22 and 23.5-kDa were detected in virus-infected cells and in cells transiently expressing recombinant TRL10. Both forms contained only high-mannose-linked carbohydrate modifications. In addition, virus-infected cells expressed small amounts of the protein modified with complex N-linked sugars. Image analysis localized transiently expressed TRL10 to the endoplasmic reticulum. Immunoblot analyses as well as immunoelectron microscopy of purified virions demonstrated that TRL10 represents a structural component of the virus particle. Immunoblot analysis in the absence of reducing agents indicated that TRL10, like the other HCMV envelope glycoproteins, is present in a disulfide-linked complex. Sequence analysis of the TRL10 coding region in nine low-passage clinical isolates revealed strain-specific variation. In summary, the protein product of the TRL10 open reading frame represents a novel structural glycoprotein of HCMV and was termed gpTRL10.


2008 ◽  
Vol 89 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Melissa P. M. Stropes ◽  
William E. Miller

The human cytomegalovirus (HCMV)-encoded viral G protein-coupled receptor pUS28 contributes to an array of biological effects, including cell migration and proliferation. Using FIX-BAC (bacterial artificial chromosome, derived from the HCMV clinical isolate VR1814) and lambda red recombination techniques, we generated HCMV recombinants expressing amino-terminally FLAG-tagged versions of wild-type pUS28 (FLAG–US28/WT), G-protein coupling deficient pUS28 (FLAG–US28/R129A) and chemokine-binding domain deficient pUS28 (FLAG–US28/ΔN). Infection with the FLAG–US28/R129A virus failed to induce inositol phosphate accumulation, indicating that G-protein coupling is essential for pUS28 signalling to phospholipase C-β (PLC-β) during HCMV infection. The FLAG–US28/ΔN virus induced about 80 % of the level of PLC-β signalling induced by the FLAG–US28/WT virus, demonstrating that the N-terminal chemokine-binding domain is not required for pUS28-induced PLC-β signalling in infected cells. The data presented here are the first to describe the functional analyses of several key pUS28 mutants in HCMV-infected cells. Elucidating the mechanisms by which pUS28 signals during infection will provide important insights into HCMV pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document