scholarly journals Translational Control of the Abundance of Cytoplasmic Poly(A) Binding Protein in Human Cytomegalovirus-Infected Cells

2010 ◽  
Vol 85 (1) ◽  
pp. 156-164 ◽  
Author(s):  
C. Perez ◽  
C. McKinney ◽  
U. Chulunbaatar ◽  
I. Mohr
2019 ◽  
Vol 116 (37) ◽  
pp. 18619-18628 ◽  
Author(s):  
Jaewon Song ◽  
Sanghyun Lee ◽  
Dong-Yeon Cho ◽  
Sungwon Lee ◽  
Hyewon Kim ◽  
...  

RNA represents a pivotal component of host–pathogen interactions. Human cytomegalovirus (HCMV) infection causes extensive alteration in host RNA metabolism, but the functional relationship between the virus and cellular RNA processing remains largely unknown. Through loss-of-function screening, we show that HCMV requires multiple RNA-processing machineries for efficient viral lytic production. In particular, the cellular RNA-binding protein Roquin, whose expression is actively stimulated by HCMV, plays an essential role in inhibiting the innate immune response. Transcriptome profiling revealed Roquin-dependent global down-regulation of proinflammatory cytokines and antiviral genes in HCMV-infected cells. Furthermore, using cross-linking immunoprecipitation (CLIP)-sequencing (seq), we identified IFN regulatory factor 1 (IRF1), a master transcriptional activator of immune responses, as a Roquin target gene. Roquin reduces IRF1 expression by directly binding to its mRNA, thereby enabling suppression of a variety of antiviral genes. This study demonstrates how HCMV exploits host RNA-binding protein to prevent a cellular antiviral response and offers mechanistic insight into the potential development of CMV therapeutics.


1967 ◽  
Vol 1 (1) ◽  
pp. 241-243 ◽  
Author(s):  
F Probstmeyer ◽  
M Benyesh-Melnick ◽  
R M McCombs

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Timo W. M. De Groof ◽  
Elizabeth G. Elder ◽  
Eleanor Y. Lim ◽  
Raimond Heukers ◽  
Nick D. Bergkamp ◽  
...  

AbstractLatent human cytomegalovirus (HCMV) infection is characterized by limited gene expression, making latent HCMV infections refractory to current treatments targeting viral replication. However, reactivation of latent HCMV in immunosuppressed solid organ and stem cell transplant patients often results in morbidity. Here, we report the killing of latently infected cells via a virus-specific nanobody (VUN100bv) that partially inhibits signaling of the viral receptor US28. VUN100bv reactivates immediate early gene expression in latently infected cells without inducing virus production. This allows recognition and killing of latently infected monocytes by autologous cytotoxic T lymphocytes from HCMV-seropositive individuals, which could serve as a therapy to reduce the HCMV latent reservoir of transplant patients.


2009 ◽  
Vol 83 (19) ◽  
pp. 10016-10027 ◽  
Author(s):  
Melissa P. Stropes ◽  
Olivia D. Schneider ◽  
William A. Zagorski ◽  
Jeanette L. C. Miller ◽  
William E. Miller

ABSTRACT The human cytomegalovirus (HCMV)-encoded G-protein-coupled receptor (GPCR) US28 is a potent activator of a number of signaling pathways in HCMV-infected cells. The intracellular carboxy-terminal domain of US28 contains residues critical for the regulation of US28 signaling in heterologous expression systems; however, the role that this domain plays during HCMV infection remains unknown. For this study, we constructed an HCMV recombinant virus encoding a carboxy-terminal domain truncation mutant of US28, FLAG-US28/1-314, to investigate the role that this domain plays in US28 signaling. We demonstrate that US28/1-314 exhibits a more potent phospholipase C-β (PLC-β) signal than does wild-type US28, indicating that the carboxy-terminal domain plays an important role in regulating agonist-independent signaling in infected cells. Moreover, HMCV-infected cells expressing the US28/1-314 mutant exhibit a prolonged calcium signal in response to CCL5, indicating that the US28 carboxy-terminal domain also regulates agonist-dependent signaling. Finally, while the chemokine CX3CL1 behaves as an inverse agonist or inhibitor of constitutive US28 signaling to PLC-β, we demonstrate that CX3CL1 functions as an agonist with regard to US28-stimulated calcium release. This study is the first to demonstrate that the carboxy terminus of US28 controls US28 signaling in the context of HCMV infection and indicates that chemokines such as CX3CL1 can decrease constitutive US28 signals and yet simultaneously promote nonconstitutive US28 signals.


1991 ◽  
Vol 35 (3) ◽  
pp. 315-329 ◽  
Author(s):  
M.Grazia Revello ◽  
Elena Percivalle ◽  
Marco Zannino ◽  
Valdano Rossi ◽  
Giuseppe Gerna

1981 ◽  
Vol 56 (1) ◽  
pp. 1-11 ◽  
Author(s):  
C. C. Chua ◽  
T. H. Carter ◽  
S. St. Jeor

Virology ◽  
1996 ◽  
Vol 224 (1) ◽  
pp. 150-160 ◽  
Author(s):  
Wade A. Bresnahan ◽  
Istvan Boldogh ◽  
E.Aubrey Thompson ◽  
Thomas Albrecht

2001 ◽  
Vol 75 (22) ◽  
pp. 11218-11221 ◽  
Author(s):  
Brendan N. Lilley ◽  
Hidde L. Ploegh ◽  
Rebecca S. Tirabassi

ABSTRACT Several herpesviruses encode Fc receptors that may play a role in preventing antibody-mediated clearance of the virus in vivo. Human cytomegalovirus (HCMV) induces an Fc-binding activity in cells upon infection, but the gene that encodes this Fc-binding protein has not been identified. Here, we demonstrate that the HCMV AD169 open reading frame TRL11 and its identical copy, IRL11, encode a type I membrane glycoprotein that possesses IgG Fc-binding capabilities.


Sign in / Sign up

Export Citation Format

Share Document