scholarly journals Structural changes in BHK cell plasma membrane caused by the binding of vesicular stomatitis virus.

1981 ◽  
Vol 39 (1) ◽  
pp. 82-86 ◽  
Author(s):  
L D Altstiel ◽  
F R Landsberger
2005 ◽  
Vol 169 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Daniela A. Sahlender ◽  
Rhys C. Roberts ◽  
Susan D. Arden ◽  
Giulietta Spudich ◽  
Marcus J. Taylor ◽  
...  

Myosin VI plays a role in the maintenance of Golgi morphology and in exocytosis. In a yeast 2-hybrid screen we identified optineurin as a binding partner for myosin VI at the Golgi complex and confirmed this interaction in a range of protein interaction studies. Both proteins colocalize at the Golgi complex and in vesicles at the plasma membrane. When optineurin is depleted from cells using RNA interference, myosin VI is lost from the Golgi complex, the Golgi is fragmented and exocytosis of vesicular stomatitis virus G-protein to the plasma membrane is dramatically reduced. Two further binding partners for optineurin have been identified: huntingtin and Rab8. We show that myosin VI and Rab8 colocalize around the Golgi complex and in vesicles at the plasma membrane and overexpression of constitutively active Rab8-Q67L recruits myosin VI onto Rab8-positive structures. These results show that optineurin links myosin VI to the Golgi complex and plays a central role in Golgi ribbon formation and exocytosis.


Methods ◽  
1997 ◽  
Vol 12 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Matthew F Mescher ◽  
Elena Savelieva

1981 ◽  
Vol 9 (2) ◽  
pp. 232P-232P
Author(s):  
G. J. Belsham ◽  
R. W. Brownsey ◽  
R. M. Denton

1989 ◽  
Vol 96 (5) ◽  
pp. 1238-1248 ◽  
Author(s):  
Paul L. McNeil ◽  
Susumu Ito

2005 ◽  
Vol 79 (11) ◽  
pp. 7077-7086 ◽  
Author(s):  
Erica L. Brown ◽  
Douglas S. Lyles

ABSTRACT Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.


2015 ◽  
Vol 89 (23) ◽  
pp. 11750-11760 ◽  
Author(s):  
Timothy K. Soh ◽  
Sean P. J. Whelan

ABSTRACTVesicular stomatitis virus (VSV) assembly requires condensation of the viral ribonucleoprotein (RNP) core with the matrix protein (M) during budding from the plasma membrane. The RNP core comprises the negative-sense genomic RNA completely coated by the nucleocapsid protein (N) and associated by a phosphoprotein (P) with the large polymerase protein (L). To study the assembly of single viral particles, we tagged M and P with fluorescent proteins. We selected from a library of viruses with insertions in the M gene a replication-competent virus containing a fluorescent M and combined that with our previously described virus containing fluorescent P. Virus particles containing those fusions maintained the same bullet shape appearance as wild-type VSV but had a modest increase in particle length, reflecting the increased genome size. Imaging of the released particles revealed a variation in the amount of M and P assembled into the virions, consistent with a flexible packaging mechanism. We used the recombinants to further study the importance of the late domains in M, which serve to recruit the endosomal sorting complex required for transport (ESCRT) machinery during budding. Mutations in late domains resulted in the accumulation of virions that failed to pinch off from the plasma membrane. Imaging of single virions released from cells that were coinfected with M tagged with enhanced green fluorescent protein and M tagged with mCherry variants in which the late domains of one virus were inactivated by mutation showed a strong bias against the incorporation of the late-domain mutant into the released virions. In contrast, the intracellular expression and membrane association of the two variants were unaltered. These studies provide new tools for imaging particle assembly and enhance our resolution of existing models for assembly of VSV.IMPORTANCEAssembly of vesicular stomatitis virus (VSV) particles requires the separate trafficking of the viral replication machinery, a matrix protein (M) and a glycoprotein, to the plasma membrane. The matrix protein contains a motif termed a “late domain” that engages the host endosomal sorting complex required for transport (ESCRT) machinery to facilitate the release of viral particles. Inactivation of the late domains through mutation results in the accumulation of virions arrested at the point of release. In the study described here, we developed new tools to study VSV assembly by fusing fluorescent proteins to M and to a constituent of the replication machinery, the phosphoprotein (P). We used those tools to show that the late domains of M are required for efficient incorporation into viral particles and that the particles contain a variable quantity of M and P.


2018 ◽  
Vol 3 ◽  
pp. 20 ◽  
Author(s):  
Diane L. Sherman ◽  
Peter J. Brophy

Charcot-Marie-Tooth (CMT) disease comprises up to 80 monogenic inherited neuropathies of the peripheral nervous system (PNS) that collectively result in demyelination and axon degeneration. The majority of CMT disease is primarily either dysmyelinating or demyelinating in which mutations affect the ability of Schwann cells to either assemble or stabilize peripheral nerve myelin. CMT4F is a recessive demyelinating form of the disease caused by mutations in the Periaxin (PRX) gene. Periaxin (Prx) interacts with Dystrophin Related Protein 2 (Drp2) in an adhesion complex with the laminin receptor Dystroglycan (Dag). In mice the Prx/Drp2/Dag complex assembles adhesive domains at the interface between the abaxonal surface of the myelin sheath and the cytoplasmic surface of the Schwann cell plasma membrane. Assembly of these appositions causes the formation of cytoplasmic channels called Cajal bands beneath the surface of the Schwann cell plasma membrane. Loss of either Periaxin or Drp2 disrupts the appositions and causes CMT in both mouse and man. In a mouse model of CMT4F, complete loss of Periaxin first prevents normal Schwann cell elongation resulting in abnormally short internodal distances which can reduce nerve conduction velocity, and subsequently precipitates demyelination. Distinct functional domains responsible for Periaxin homodimerization and interaction with Drp2 to form the Prx/Drp2/Dag complex have been identified at the N-terminus of Periaxin. However, CMT4F can also be caused by a mutation that results in the truncation of Periaxin at the extreme C-terminus with the loss of 391 amino acids. By modelling this in mice, we show that loss of the C-terminus of Periaxin results in a surprising reduction in Drp2. This would be predicted to cause the observed instability of both appositions and myelin, and contribute significantly to the clinical phenotype in CMT4F.


1996 ◽  
Vol 133 (3) ◽  
pp. 543-558 ◽  
Author(s):  
A Müsch ◽  
H Xu ◽  
D Shields ◽  
E Rodriguez-Boulan

Current model propose that in nonpolarized cells, transport of plasma membrane proteins to the surface occurs by default. In contrast, compelling evidence indicates that in polarized epithelial cells, plasma membrane proteins are sorted in the TGN into at least two vectorial routes to apical and basolateral surface domains. Since both apical and basolateral proteins are also normally expressed by both polarized and nonpolarized cells, we explored here whether recently described basolateral sorting signals in the cytoplasmic domain of basolateral proteins are recognized and used for post TGN transport by nonpolarized cells. To this end, we compared the inhibitory effect of basolateral signal peptides on the cytosol-stimulated release of two basolateral and one apical marker in semi-intact fibroblasts (3T3), pituitary (GH3), and epithelial (MDCK) cells. A basolateral signal peptide (VSVGp) corresponding to the 29-amino acid cytoplasmic tail of vesicular stomatitis virus G protein (VSVG) inhibited with identical potency the vesicular release of VSVG from the TGN of all three cell lines. On the other hand, the VSVG peptide did not inhibit the vesicular release of HA in MDCK cells not of two polypeptide hormones (growth hormone and prolactin) in GH3 cells, whereas in 3T3 cells (influenza) hemagglutinin was inhibited, albeit with a 3x lower potency than VSVG. The results support the existence of a basolateral-like, signal-mediated constitutive pathway from TGN to plasma membrane in all three cell types, and suggest that an apical-like pathway may be present in fibroblast. The data support cargo protein involvement, not bulk flow, in the formation of post-TGN vesicles and predict the involvement of distinct cytosolic factors in the assembly of apical and basolateral transport vesicles.


Sign in / Sign up

Export Citation Format

Share Document