Spike protein oligomerization control of Semliki Forest virus fusion.

1990 ◽  
Vol 64 (10) ◽  
pp. 5214-5218 ◽  
Author(s):  
M Lobigs ◽  
J M Wahlberg ◽  
H Garoff
2006 ◽  
Vol 80 (22) ◽  
pp. 11362-11369 ◽  
Author(s):  
Maofu Liao ◽  
Margaret Kielian

ABSTRACT Membrane fusion of the alphaviruses is mediated by the E1 protein, a class II virus membrane fusion protein. During fusion, E1 dissociates from its heterodimer interaction with the E2 protein and forms a target membrane-inserted E1 homotrimer. The structure of the homotrimer is that of a trimeric hairpin in which E1 domain III and the stem region fold back toward the target membrane-inserted fusion peptide loop. The E1 stem region has a strictly conserved length and several highly conserved residues, suggesting the possibility of specific stem interactions along the trimer core and an important role in driving membrane fusion. Mutagenesis studies of the alphavirus Semliki Forest virus (SFV) here demonstrated that there was a strong requirement for the E1 stem in virus assembly and budding, probably reflecting its importance in lateral interactions of the envelope proteins. Surprisingly, however, neither the conserved length nor any specific residues of the stem were required for membrane fusion. Although the highest fusion activity was observed with wild-type E1, efficient fusion was mediated by stem mutants containing a variety of substitutions or deletions. A minimal stem length was required but could be conferred by a series of alanine residues. The lack of a specific stem sequence requirement during SFV fusion suggests that the interaction of domain III with the trimer core can provide sufficient driving force to mediate membrane merger.


1998 ◽  
Vol 140 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Malini Vashishtha ◽  
Thomas Phalen ◽  
Marianne T. Marquardt ◽  
Jae S. Ryu ◽  
Alice C. Ng ◽  
...  

Membrane fusion and budding are key steps in the life cycle of all enveloped viruses. Semliki Forest virus (SFV) is an enveloped alphavirus that requires cellular membrane cholesterol for both membrane fusion and efficient exit of progeny virus from infected cells. We selected an SFV mutant, srf-3, that was strikingly independent of cholesterol for growth. This phenotype was conferred by a single amino acid change in the E1 spike protein subunit, proline 226 to serine, that increased the cholesterol independence of both srf-3 fusion and exit. The srf-3 mutant emphasizes the relationship between the role of cholesterol in membrane fusion and virus exit, and most significantly, identifies a novel spike protein region involved in the virus cholesterol requirement.


1992 ◽  
Vol 116 (2) ◽  
pp. 339-348 ◽  
Author(s):  
J M Wahlberg ◽  
H Garoff

The Semliki Forest virus (SFV) directs the synthesis of a heterodimeric membrane protein complex which is used for virus membrane assembly during budding at the surface of the infected cell, as well as for low pH-induced membrane fusion in the endosomes when particles enter new host cells. Existing evidence suggests that the E1 protein subunit carries the fusion potential of the heterodimer, whereas the E2 subunit, or its intracellular precursor p62, is required for binding to the nucleocapsid. We show here that during virus uptake into acidic endosomes the original E2E1 heterodimer is destabilized and the E1 proteins form new oligomers, presumably homooligomers, with altered E1 structure. This altered structure of E1 is specifically recognized by a monoclonal antibody which can also inhibit penetration of SFV into host cells as well as SFV-mediated cell-cell fusion, thus suggesting that the altered E1 structure is important for the membrane fusion. These results give further support for a membrane protein oligomerization-mediated control mechanism for the membrane fusion potential in alphaviruses.


1999 ◽  
Vol 73 (12) ◽  
pp. 10029-10039 ◽  
Author(s):  
Anna Ahn ◽  
Matthew R. Klimjack ◽  
Prodyot K. Chatterjee ◽  
Margaret Kielian

ABSTRACT Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.


1998 ◽  
Vol 283 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Ilaria Ferlenghi ◽  
Brent Gowen ◽  
Felix de Haas ◽  
Erika J Mancini ◽  
Henrik Garoff ◽  
...  

2020 ◽  
Author(s):  
Debnath Pal

AbstractCompared to the other human coronaviruses, SARS-CoV-2 has a higher reproductive number that is driving the COVID-19 pandemic. The high transmission of SARS-CoV-2 has been attributed to environmental, immunological, and molecular factors. The Spike protein is the foremost molecular factor responsible for virus fusion, entry and spread in the host, and thus holds clues for the rapid viral spread. The dense glycosylation of Spike, its high affinity of binding to the human ACE2 receptor, and the efficient priming by cleavage have already been proposed for driving efficient virus-host entry, but these do not explain its unusually high transmission rate. I have investigated the Spike from six β-coronaviruses, including the SARS-CoV-2, and find that their surface-exposed fusion peptides constituting the defined fusion loop are spatially organized contiguous to each other to work synergistically for triggering the virus-host membrane fusion process. The architecture of the Spike quaternary structure ensures the participation of the fusion peptides in the initiation of the host membrane contact for the virus fusion process. The SARS-CoV-2 fusion peptides have unique physicochemical properties, accrued in part from the presence of consecutive prolines that impart backbone rigidity which aids the virus fusogenicity. The specific contribution of these prolines shows significantly diminished fusogenicity in vitro and associated pathogenesis in vivo, inferred from comparative studies of their deletion-mutant in a fellow murine β-coronavirus MHV-A59. The priming of the Spike by its cleavage and subsequent fusogenic conformational transition steered by the fusion loop may be critical for the SARS-CoV-2 spread.Significance StatementThe three proximal fusion peptides constituting the fusion loop in Spike protein are the membranotropic segments most suitable for engaging the host membrane surface for its disruption. Spike’s unique quaternary structure architecture drives the fusion peptides to initiate the protein host membrane contact. The SARS-CoV-2 Spike trimer surface is relatively more hydrophobic among other human coronavirus Spikes, including the fusion peptides that are structurally more rigid owing to the presence of consecutive prolines, aromatic/hydrophobic clusters, a stretch of consecutive β-branched amino acids, and the hydrogen bonds. The synergy accrued from the location of the fusion peptides, their physicochemical features, and the fusogenic conformational transition appears to drive the virus fusion process and may explain the high spread of the SARS-CoV-2.


1996 ◽  
Vol 134 (4) ◽  
pp. 863-872 ◽  
Author(s):  
M Kielian ◽  
M R Klimjack ◽  
S Ghosh ◽  
W A Duffus

Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell-cell fusion (G91A), or block cell-cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell-cell and virus-liposome fusion assays. During the low pH- induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer.


Sign in / Sign up

Export Citation Format

Share Document