scholarly journals In vitro-synthesized hepatitis delta virus RNA initiates genome replication in cultured cells.

1990 ◽  
Vol 64 (6) ◽  
pp. 3104-3107 ◽  
Author(s):  
J S Glenn ◽  
J M Taylor ◽  
J M White
2000 ◽  
Vol 74 (16) ◽  
pp. 7204-7210 ◽  
Author(s):  
Severin Gudima ◽  
Shwu-Yuan Wu ◽  
Cheng-Ming Chiang ◽  
Gloria Moraleda ◽  
John Taylor

ABSTRACT Hepatitis delta virus (HDV) is unique relative to all known animal viruses, especially in terms of its ability to redirect host RNA polymerase(s) to transcribe its 1,679-nucleotide (nt) circular RNA genome. During replication there accumulates not only more molecules of the genome but also its exact complement, the antigenome. In addition, there are relatively smaller amounts of an 800-nt RNA of antigenomic polarity that is polyadenylated and considered to act as mRNA for translation of the single and essential HDV protein, the delta antigen. Characterization of this mRNA could provide insights into the in vivo mechanism of HDV RNA-directed RNA transcription and processing. Previously, we showed that the 5′ end of this RNA was located in the majority of species, at nt 1630. The present studies show that (i) at least some of this RNA, as extracted from the liver of an HDV-infected woodchuck, behaved as if it contained a 5′-cap structure; (ii) in the infected liver there were additional polyadenylated antigenomic HDV RNA species with 5′ ends located at least 202 nt and even 335 nt beyond the nt 1630 site, (iii) the 5′ end at nt 1630 was not detected in transfected cells, following DNA-directed HDV RNA transcription, in the absence of genome replication, and (iv) nevertheless, using in vitro transcription with purified human RNA polymerase II holoenzyme and genomic RNA template, we did not detect initiation of template-dependent RNA synthesis; we observed only low levels of 3′-end addition to the template. These new findings support the interpretation that the 5′ end detected at nt 1630 during HDV replication represents a specific site for the initiation of an RNA-directed RNA synthesis, which is then modified by capping.


1999 ◽  
Vol 73 (8) ◽  
pp. 6533-6539 ◽  
Author(s):  
Severin Gudima ◽  
Kate Dingle ◽  
Ting-Ting Wu ◽  
Gloria Moraleda ◽  
John Taylor

ABSTRACT The genome of hepatitis delta virus (HDV) is a 1,679-nucleotide (nt) single-stranded circular RNA that is predicted to fold into an unbranched rodlike structure. During replication, two complementary RNAs are also detected: an exact complement, referred to as the antigenome, and an 800-nt polyadenylated RNA that could act as the mRNA for the delta antigen. We used a 5′ rapid amplification of cDNA ends procedure, followed by cloning and sequencing, to determine the 5′ ends of the polyadenylated RNAs produced during HDV genome replication following initiation under different experimental conditions. The analyzed RNAs were from the liver of an infected woodchuck and from a liver cell line at 6 days after transfection with either an HDV cDNA or ribonucleoprotein (RNP) complexes assembled in vitro with HDV genomic RNA and purified recombinant small delta protein. In all three situations the 5′ ends mapped specifically to nt 1630. In relationship to what is called the top end of the unbranched rodlike structure predicted for the genomic RNA template, this site is located 10 nt from the top, and in the middle of a 3-nt external bulge. Following transfection with RNP, such specific 5′ ends could be detected as early as 24 h. We next constructed a series of mutants of this predicted bulge region and of an adjacent 6-bp stem and the top 5-nt loop. Some of these mutations decreased the ability of the genome to undergo antigenomic RNA synthesis and accumulation and/or altered the location of the detected 5′ ends. The observed end located at nt 1630, and most of the novel 5′ ends, were consistent with transcription initiation events that preferentially used a purine. The present studies do not prove that the detected 5′ ends correspond to initiation sites and do not establish the hypothesis that there is a promoter element in the vicinity, but they do show that the location of the observed 5′ ends could be controlled by nucleotide sequences at and around nt 1630.


1998 ◽  
Vol 18 (4) ◽  
pp. 1919-1926 ◽  
Author(s):  
Andrew G. Polson ◽  
Herbert L. Ley ◽  
Brenda L. Bass ◽  
John L. Casey

ABSTRACT RNA editing at adenosine 1012 (amber/W site) in the antigenomic RNA of hepatitis delta virus (HDV) allows two essential forms of the viral protein, hepatitis delta antigen (HDAg), to be synthesized from a single open reading frame. Editing at the amber/W site is thought to be catalyzed by one of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). In vitro, the enzymes ADAR1 and ADAR2 deaminate adenosines within many different sequences of base-paired RNA. Since promiscuous deamination could compromise the viability of HDV, we wondered if additional deamination events occurred within the highly base paired HDV RNA. By sequencing cDNAs derived from HDV RNA from transfected Huh-7 cells, we determined that the RNA was not extensively modified at other adenosines. Approximately 0.16 to 0.32 adenosines were modified per antigenome during 6 to 13 days posttransfection. Interestingly, all observed non-amber/W adenosine modifications, which occurred mostly at positions that are highly conserved among naturally occurring HDV isolates, were found in RNAs that were also modified at the amber/W site. Such coordinate modification likely limits potential deleterious effects of promiscuous editing. Neither viral replication nor HDAg was required for the highly specific editing observed in cells. However, HDAg was found to suppress editing at the amber/W site when expressed at levels similar to those found during HDV replication. These data suggest HDAg may regulate amber/W site editing during virus replication.


2015 ◽  
Vol 96 (12) ◽  
pp. 3460-3469 ◽  
Author(s):  
Mei Chao ◽  
Chia-Chi Lin ◽  
Feng-Ming Lin ◽  
Hsin-Pai Li ◽  
Shan-Bei Iang

Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.


1998 ◽  
Vol 72 (6) ◽  
pp. 4783-4788 ◽  
Author(s):  
Kate Dingle ◽  
Vadim Bichko ◽  
Harmon Zuccola ◽  
James Hogle ◽  
John Taylor

ABSTRACT The small, 195-amino-acid form of the hepatitis delta virus (HDV) antigen (δAg-S) is essential for genome replication, i.e., for the transcription, processing, and accumulation of HDV RNAs. To better understand this requirement, we used purified recombinant δAg-S and HDV RNA synthesized in vitro to assemble high-molecular-weight ribonucleoprotein (RNP) structures. After transfection of these RNPs into human cells, we detected HDV genome replication, as assayed by Northern analysis or immunofluorescence microscopy. Our interpretation is that the input δAg-S is necessary for the RNA to undergo limited amounts of RNA-directed RNA synthesis, RNA processing, and mRNA formation, leading to de novo translation of δAg-S. It is this second source of δAg-S which then goes on to support genome replication. This assay made it possible to manipulate in vitro the composition of the RNP and then test in vivo the ability of the complex to initiate RNA-directed RNA synthesis and go on to achieve genome replication. For example, both genomic and antigenomic linear RNAs were acceptable. Substitution for δAg-S with truncated or modified forms of the δAg, and even with HIV nucleocapsid protein and polylysine, was unacceptable; the exception was a form of δAg-S with six histidines added at the C terminus. We expect that further in vitro modifications of these RNP complexes should help define the in vivo requirements for what we define as the initiation of HDV genome replication.


2001 ◽  
Vol 75 (7) ◽  
pp. 3469-3473 ◽  
Author(s):  
Jinhong Chang ◽  
Luis J. Sigal ◽  
Anthony Lerro ◽  
John Taylor

ABSTRACT As early as 5 days after DNA copies of the hepatitis delta virus (HDV) genome or even in vitro-transcribed HDV RNA sequences were injected into the mouse tail vein using the hydrodynamics-based transfection procedure of F. Liu et al. (Gene Ther. 6:1258–1266, 1999), it was possible to detect in the liver by Northern analyses of RNA, immunoblots of protein, and immunostaining of liver sections what were considered typical features of HDV genome replication. This transfection strategy should have valuable applications for in vivo studies of HDV replication and pathogenesis and may also be useful for studies of other hepatotropic viruses.


2021 ◽  
Author(s):  
Kasthuri Prakash ◽  
Simon B. Larsson ◽  
Gustaf E. Rydell ◽  
Johan Ringlander ◽  
Catarina Skoglund ◽  
...  

2007 ◽  
Vol 82 (3) ◽  
pp. 1118-1127 ◽  
Author(s):  
Jinhong Chang ◽  
Xingcao Nie ◽  
Ho Eun Chang ◽  
Ziying Han ◽  
John Taylor

ABSTRACT Previous studies have indicated that the replication of the RNA genome of hepatitis delta virus (HDV) involves redirection of RNA polymerase II (Pol II), a host enzyme that normally uses DNA as a template. However, there has been some controversy about whether in one part of this HDV RNA transcription, a polymerase other than Pol II is involved. The present study applied a recently described cell system (293-HDV) of tetracycline-inducible HDV RNA replication to provide new data regarding the involvement of host polymerases in HDV transcription. The data generated with a nuclear run-on assay demonstrated that synthesis not only of genomic RNA but also of its complement, the antigenome, could be inhibited by low concentrations of amanitin specific for Pol II transcription. Subsequent studies used immunoprecipitation and rate-zonal sedimentation of nuclear extracts together with double immunostaining of 293-HDV cells, in order to examine the associations between Pol II and HDV RNAs, as well as the small delta antigen, an HDV-encoded protein known to be essential for replication. Findings include evidence that HDV replication is somehow able to direct the available delta antigen to sites in the nucleoplasm, almost exclusively colocalized with Pol II in what others have described as transcription factories.


2009 ◽  
Vol 83 (13) ◽  
pp. 6457-6463 ◽  
Author(s):  
Ziying Han ◽  
Carolina Alves ◽  
Severin Gudima ◽  
John Taylor

ABSTRACT Hepatitis delta virus (HDV) encodes one protein, hepatitis delta antigen (δAg), a 195-amino-acid RNA binding protein essential for the accumulation of HDV RNA-directed RNA transcripts. It has been accepted that δAg localizes predominantly to the nucleolus in the absence of HDV genome replication while in the presence of replication, δAg facilitates HDV RNA transport to the nucleoplasm and helps redirect host RNA polymerase II (Pol II) to achieve transcription and accumulation of processed HDV RNA species. This study used immunostaining and confocal microscopy to evaluate factors controlling the localization of δAg in the presence and absence of replicating and nonreplicating HDV RNAs. When δAg was expressed in the absence of full-length HDV RNAs, it colocalized with nucleolin, a predominant nucleolar protein. With time, or more quickly after induced cell stress, there was a redistribution of both δAg and nucleolin to the nucleoplasm. Following expression of nonreplicating HDV RNAs, δAg moved to the nucleoplasm, but nucleolin was unchanged. When δAg was expressed along with replicating HDV RNA, it was found predominantly in the nucleoplasm along with Pol II. This localization was insensitive to inhibitors of HDV replication, suggesting that the majority of δAg in the nucleoplasm reflects ribonucleoprotein accumulation rather than ongoing transcription. An additional approach was to reevaluate several forms of δAg altered at specific locations considered to be essential for protein function. These studies provide evidence that δAg does not interact directly with either Pol II or nucleolin and that forms of δAg which support replication are also capable of prior nucleolar transit.


Sign in / Sign up

Export Citation Format

Share Document