The QRxGRxGRxxxG motif of the vaccinia virus DExH box RNA helicase NPH-II is required for ATP hydrolysis and RNA unwinding but not for RNA binding.

1996 ◽  
Vol 70 (3) ◽  
pp. 1706-1713 ◽  
Author(s):  
C H Gross ◽  
S Shuman
1998 ◽  
Vol 72 (6) ◽  
pp. 4729-4736 ◽  
Author(s):  
Christian H. Gross ◽  
Stewart Shuman

ABSTRACT Vaccinia virus NPH-II is the prototypal RNA helicase of the DExH box protein family, which is defined by six shared sequence motifs. The contributions of conserved amino acids in motifs I (TGVGKTSQ), Ia (PRI), II (DExHE), and III (TAT) to enzyme activity were assessed by alanine scanning. NPH-II-Ala proteins were expressed in baculovirus-infected Sf9 cells, purified, and characterized with respect to their RNA helicase, nucleic acid-dependent ATPase, and RNA binding functions. Alanine substitutions at Lys-191 and Thr-192 (motif I), Arg-229 (motif Ia), and Glu-300 (motif II) caused severe defects in RNA unwinding that correlated with reduced rates of ATP hydrolysis. In contrast, alanine mutations at His-299 (motif II) and at Thr-326 and Thr-328 (motif III) elicited defects in RNA unwinding but spared the ATPase. None of the mutations analyzed affected the binding of NPH-II to RNA. These findings, together with previous mutational studies, indicate that NPH-II motifs I, Ia, II, and VI (QRxGRxGRxxxG) are essential for nucleoside triphosphate (NTP) hydrolysis, whereas motif III and the His moiety of the DExH-box serve to couple the NTPase and helicase activities. Wild-type and mutant NPH-II-Ala genes were tested for the ability to rescue temperature-sensitive nph2-tsviruses. NPH-II mutations that inactivated the phosphohydrolase in vitro were lethal in vivo, as judged by the failure to recover rescued viruses containing the Ala substitution. The NTPase activity was necessary, but not sufficient, to sustain virus replication, insofar as mutants for which NTPase was uncoupled from unwinding (H299A, T326A, and T328A) were also lethal. We conclude that the phosphohydrolase and helicase activities of NPH-II are essential for virus replication.


2000 ◽  
Vol 74 (20) ◽  
pp. 9732-9737 ◽  
Author(s):  
Shin C. Chang ◽  
Ju-Chien Cheng ◽  
Yi-Hen Kou ◽  
Chuan-Hong Kao ◽  
Chiung-Hui Chiu ◽  
...  

ABSTRACT The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) possesses protease, nucleoside triphosphatase, and helicase activities. Although the enzymatic activities have been extensively studied, the ATP- and RNA-binding domains of the NS3 helicase are not well-characterized. In this study, NS3 proteins with point mutations in the conserved helicase motifs were expressed inEscherichia coli, purified, and analyzed for their effects on ATP binding, RNA binding, ATP hydrolysis, and RNA unwinding. UV cross-linking experiments indicate that the lysine residue in the AX4GKS motif is directly involved in ATP binding, whereas the NS3(GR1490DT) mutant in which the arginine-rich motif (1486-QRRGRTGR-1493) was changed to QRRDTTGR bound ATP as well as the wild type. The binding activity of HCV NS3 helicase to the viral RNA was drastically reduced with the mutation at Arg1488 (R1488A) and was also affected by the K1236E substitution in the AX4GKS motif and the R1490A and GR1490DT mutations in the arginine-rich motif. Previously, Arg1490 was suggested, based on the crystal structure of an NS3-deoxyuridine octamer complex, to directly interact with the γ-phosphate group of ATP. Nevertheless, our functional analysis demonstrated the critical roles of Arg1490 in binding to the viral RNA, ATP hydrolysis, and RNA unwinding, but not in ATP binding.


Genetics ◽  
2020 ◽  
Vol 215 (2) ◽  
pp. 421-434 ◽  
Author(s):  
Wenjun Chen ◽  
Yabing Hu ◽  
Charles F. Lang ◽  
Jordan S. Brown ◽  
Sierra Schwabach ◽  
...  

P granules are phase-separated liquid droplets that play important roles in the maintenance of germ cell fate in Caenorhabditis elegans. Both the localization and formation of P granules are highly dynamic, but mechanisms that regulate such processes remain poorly understood. Here, we show evidence that the VASA-like germline RNA helicase GLH-1 couples distinct steps of its ATPase hydrolysis cycle to control the formation and disassembly of P granules. In addition, we found that the phenylalanine-glycine-glycine repeats in GLH-1 promote its localization at the perinucleus. Proteomic analyses of the GLH-1 complex with a GLH-1 mutation that interferes with P granule disassembly revealed transient interactions of GLH-1 with several Argonautes and RNA-binding proteins. Finally, we found that defects in recruiting the P granule component PRG-1 to perinuclear foci in the adult germline correlate with the fertility defects observed in various GLH-1 mutants. Together, our results highlight the versatile roles of an RNA helicase in controlling the formation of liquid droplets in space and time.


2009 ◽  
Vol 390 (12) ◽  
Author(s):  
Manuel Hilbert ◽  
Anne R. Karow ◽  
Dagmar Klostermeier

Abstract DEAD box proteins catalyze the ATP-dependent unwinding of double-stranded RNA (dsRNA). In addition, they facilitate protein displacement and remodeling of RNA or RNA/protein complexes. Their hallmark feature is local destabilization of RNA duplexes. Here, we summarize current data on the DEAD box protein mechanism and present a model for RNA unwinding that integrates recent data on the effect of ATP analogs and mutations on DEAD box protein activity. DEAD box proteins share a conserved helicase core with two flexibly linked RecA-like domains that contain all helicase signature motifs. Variable flanking regions contribute to substrate binding and modulate activity. In the presence of ATP and RNA, the helicase core adopts a compact, closed conformation with extensive interdomain contacts and high affinity for RNA. In the closed conformation, the RecA-like domains form a catalytic site for ATP hydrolysis and a continuous RNA binding site. A kink in the backbone of the bound RNA locally destabilizes the duplex. Rearrangement of this initial complex generates a hydrolysis- and unwinding-competent state. From this complex, the first RNA strand can dissociate. After ATP hydrolysis and phosphate release, the DEAD box protein returns to a low-affinity state for RNA. Dissociation of the second RNA strand and reopening of the cleft in the helicase core allow for further catalytic cycles.


2021 ◽  
Vol 77 (4) ◽  
pp. 496-509
Author(s):  
Florian Hamann ◽  
Lars C. Zimmerningkat ◽  
Robert A. Becker ◽  
Tim B. Garbers ◽  
Piotr Neumann ◽  
...  

Noncoding intron sequences present in precursor mRNAs need to be removed prior to translation, and they are excised via the spliceosome, a multimegadalton molecular machine composed of numerous protein and RNA components. The DEAH-box ATPase Prp2 plays a crucial role during pre-mRNA splicing as it ensures the catalytic activation of the spliceosome. Despite high structural similarity to other spliceosomal DEAH-box helicases, Prp2 does not seem to function as an RNA helicase, but rather as an RNA-dependent ribonucleoprotein particle-modifying ATPase. Recent crystal structures of the spliceosomal DEAH-box ATPases Prp43 and Prp22, as well as of the related RNA helicase MLE, in complex with RNA have contributed to a better understanding of how RNA binding and processivity might be achieved in this helicase family. In order to shed light onto the divergent manner of function of Prp2, an N-terminally truncated construct of Chaetomium thermophilum Prp2 was crystallized in the presence of ADP-BeF3 − and a poly-U12 RNA. The refined structure revealed a virtually identical conformation of the helicase core compared with the ADP-BeF3 −- and RNA-bound structure of Prp43, and only a minor shift of the C-terminal domains. However, Prp2 and Prp43 differ in the hook-loop and a loop of the helix-bundle domain, which interacts with the hook-loop and evokes a different RNA conformation immediately after the 3′ stack. On replacing these loop residues in Prp43 by the Prp2 sequence, the unwinding activity of Prp43 was abolished. Furthermore, a putative exit tunnel for the γ-phosphate after ATP hydrolysis could be identified in one of the Prp2 structures.


1993 ◽  
Vol 13 (11) ◽  
pp. 6789-6798 ◽  
Author(s):  
A Pause ◽  
N Méthot ◽  
N Sonenberg

eIF-4A is a eukaryotic translation initiation factor that is required for mRNA binding to ribosomes. It exhibits single-stranded RNA-dependent ATPase activity, and in combination with a second initiation factor, eIF-4B, it exhibits duplex RNA helicase activity. eIF-4A is the prototype of a large family of proteins termed the DEAD box protein family, whose members share nine highly conserved amino acid regions. The functions of several of these conserved regions in eIF-4A have previously been assigned to ATP binding, ATPase, and helicase activities. To define the RNA-binding region of eIF-4A, a UV-induced cross-linking assay was used to analyze binding of mutant eIF-4A proteins to RNA. Mutants carrying mutations in the ATP-binding region (AXXXXGKT), ATPase region (DEAD), helicase region (SAT), and the most carboxy-terminal conserved region of the DEAD family, HRIGRXXR, were tested for RNA cross-linking. We show that mutations, either conservative or not, in any one of the three arginines in the HRIGRXXR sequence drastically reduced eIF-4A cross-linking to RNA. In addition, all the mutations in the HRIGRXXR region abrogate RNA helicase activity. Some but not all of these mutations affect ATP binding and ATPase activity. This is consistent with the hypothesis that the HRIGRXXR region is involved in the ATP hydrolysis reaction and would explain the coupling of ATPase and RNA-binding/helicase activities. Our results show that the HRIGRXXR region, which is QRXGRXXR or QXXGRXXR in the RNA and DNA helicases of the helicase superfamily II, is involved in ATP hydrolysis-dependent RNA interaction during unwinding. We also show that mutations in other regions of eIF-4A that abolish ATPase activity sharply decrease eIF-4A cross-linking to RNA. A model is proposed in which eIF-4A first binds ATP, resulting in a change in eIF-4A conformation which allows RNA binding that is dependent on the HRIGRXXR region. Binding of RNA induces ATP hydrolysis, leading to a more stable interaction with RNA. This process is then linked to unwinding of duplex RNA in the presence of eIF-4B.


2019 ◽  
Vol 47 (16) ◽  
pp. 8693-8707 ◽  
Author(s):  
Shan Xu ◽  
Yali Ci ◽  
Leijie Wang ◽  
Yang Yang ◽  
Leiliang Zhang ◽  
...  

Abstract Zika virus is a positive single-strand RNA virus whose replication involved RNA unwinding and synthesis. ZIKV NS3 contains a helicase domain, but its enzymatic activity is not fully characterized. Here, we established a dsRNA unwinding assay based on the FRET effect to study the helicase activity of ZIKV NS3, which provided kinetic information in real time. We found that ZIKV NS3 specifically unwound dsRNA/dsDNA with a 3′ overhang in the 3′ to 5′ direction. The RNA unwinding ability of NS3 significantly decreased when the duplex was longer than 18 base pairs. The helicase activity of NS3 depends on ATP hydrolysis and binding to RNA. Mutations in the ATP binding region or the RNA binding region of NS3 impair its helicase activity, thus blocking viral replication in the cell. Furthermore, we showed that ZIKV NS5 interacted with NS3 and stimulated its helicase activity. Disrupting NS3-NS5 interaction resulted in a defect in viral replication, revealing the tight coupling of RNA unwinding and synthesis. We suggest that NS3 helicase activity is stimulated by NS5; thus, viral replication can be carried out efficiently. Our work provides a molecular mechanism of ZIKV NS3 unwinding and novel insights into ZIKV replication.


2019 ◽  
Vol 295 (7) ◽  
pp. 2097-2112 ◽  
Author(s):  
Karen Vester ◽  
Karine F. Santos ◽  
Benno Kuropka ◽  
Christoph Weise ◽  
Markus C. Wahl

The RNA helicase bad response to refrigeration 2 homolog (BRR2) is required for the activation of the spliceosome before the first catalytic step of RNA splicing. BRR2 represents a distinct subgroup of Ski2-like nucleic acid helicases whose members comprise tandem helicase cassettes. Only the N-terminal cassette of BRR2 is an active ATPase and can unwind substrate RNAs. The C-terminal cassette represents a pseudoenzyme that can stimulate RNA-related activities of the N-terminal cassette. However, the molecular mechanisms by which the C-terminal cassette modulates the activities of the N-terminal unit remain elusive. Here, we show that N- and C-terminal cassettes adopt vastly different relative orientations in a crystal structure of BRR2 in complex with an activating domain of the spliceosomal Prp8 protein at 2.4 Å resolution compared with the crystal structure of BRR2 alone. Likewise, inspection of BRR2 structures within spliceosomal complexes revealed that the cassettes occupy different relative positions and engage in different intercassette contacts during different splicing stages. Engineered disulfide bridges that locked the cassettes in two different relative orientations had opposite effects on the RNA-unwinding activity of the N-terminal cassette, with one configuration enhancing and the other configuration inhibiting RNA unwinding compared with the unconstrained protein. Moreover, we found that differences in relative positioning of the cassettes strongly influence RNA-stimulated ATP hydrolysis by the N-terminal cassette. Our results indicate that the inactive C-terminal cassette of BRR2 can both positively and negatively affect the activity of the N-terminal helicase unit from a distance.


1993 ◽  
Vol 13 (11) ◽  
pp. 6789-6798 ◽  
Author(s):  
A Pause ◽  
N Méthot ◽  
N Sonenberg

eIF-4A is a eukaryotic translation initiation factor that is required for mRNA binding to ribosomes. It exhibits single-stranded RNA-dependent ATPase activity, and in combination with a second initiation factor, eIF-4B, it exhibits duplex RNA helicase activity. eIF-4A is the prototype of a large family of proteins termed the DEAD box protein family, whose members share nine highly conserved amino acid regions. The functions of several of these conserved regions in eIF-4A have previously been assigned to ATP binding, ATPase, and helicase activities. To define the RNA-binding region of eIF-4A, a UV-induced cross-linking assay was used to analyze binding of mutant eIF-4A proteins to RNA. Mutants carrying mutations in the ATP-binding region (AXXXXGKT), ATPase region (DEAD), helicase region (SAT), and the most carboxy-terminal conserved region of the DEAD family, HRIGRXXR, were tested for RNA cross-linking. We show that mutations, either conservative or not, in any one of the three arginines in the HRIGRXXR sequence drastically reduced eIF-4A cross-linking to RNA. In addition, all the mutations in the HRIGRXXR region abrogate RNA helicase activity. Some but not all of these mutations affect ATP binding and ATPase activity. This is consistent with the hypothesis that the HRIGRXXR region is involved in the ATP hydrolysis reaction and would explain the coupling of ATPase and RNA-binding/helicase activities. Our results show that the HRIGRXXR region, which is QRXGRXXR or QXXGRXXR in the RNA and DNA helicases of the helicase superfamily II, is involved in ATP hydrolysis-dependent RNA interaction during unwinding. We also show that mutations in other regions of eIF-4A that abolish ATPase activity sharply decrease eIF-4A cross-linking to RNA. A model is proposed in which eIF-4A first binds ATP, resulting in a change in eIF-4A conformation which allows RNA binding that is dependent on the HRIGRXXR region. Binding of RNA induces ATP hydrolysis, leading to a more stable interaction with RNA. This process is then linked to unwinding of duplex RNA in the presence of eIF-4B.


Sign in / Sign up

Export Citation Format

Share Document