scholarly journals Adeno-Associated Virus Rep78 Protein Interacts with Protein Kinase A and Its Homolog PRKX and Inhibits CREB-Dependent Transcriptional Activation

1998 ◽  
Vol 72 (10) ◽  
pp. 7916-7925 ◽  
Author(s):  
Giovanni Di Pasquale ◽  
Simon N. Stacey

ABSTRACT Adeno-associated virus (AAV) is a human parvovirus of the genusDependovirus. AAV replication is largely restricted to cells which are coinfected with a helper virus. In the absence of a helper virus, the AAV genome can integrate into a specific chromosomal site where it remains latent until reactivated by superinfection of the host cell with an appropriate helper virus. Replication functions of AAV have been mapped to the Rep68 and Rep78 gene products. Rep proteins demonstrate DNA binding, endonuclease, and helicase activities and are involved in regulation of transcription from both AAV and heterologous promoters. AAV has been associated with suppression of oncogenicity in a range of viral and nonviral tumors. In this study we sought to identify and study cellular protein targets of AAV Rep, in order to develop a better understanding of the various activities of Rep. We used the yeast two-hybrid system to identify HeLa cell proteins that interact with AAV type 2 Rep78. We isolated several strongly interacting clones which were subsequently identified as PRKX (previously named PKX1), a recently described homolog of the protein kinase A (PKA) catalytic subunit (PKAc). The interaction was confirmed in vitro by using pMal-Rep pull-down assays. The region of Rep78 which interacts was mapped to a C-terminal zinc finger-like domain; Rep68, which lacks this domain, did not interact with PRKX. PRKX demonstrated autophosphorylation and kinase activity towards histone H1 and a PKA oligopeptide target. Autophosphorylation was inhibited by interaction with Rep78. In transfection assays, a PRKX expression vector was shown to be capable of activating CREB-dependent transcription. This activation was suppressed by Rep78 but not by Rep68. Since PRKX is a close homolog of PKAc, we investigated whether Rep78 could interact directly with PKAc. pMal-Rep78 was found to associate with purified PKAc and inhibited its kinase activity. Cotransfection experiments demonstrated that Rep78 could block the activation of CREB by a PKAc expression vector. These experiments suggest that AAV may perturb normal cyclic AMP response pathways in infected cells.

2003 ◽  
Vol 23 (16) ◽  
pp. 5526-5539 ◽  
Author(s):  
Sophie Cotteret ◽  
Zahara M. Jaffer ◽  
Alexander Beeser ◽  
Jonathan Chernoff

ABSTRACT Pak5 is the most recently identified and least understood member of the p21-activated kinase (Pak) family. This kinase is known to promote neurite outgrowth in vitro, but its localization, substrates, and effects on cell survival have not been reported. We show here that Pak5 has unique properties that distinguish it from all other members of the Pak family. First, Pak5, unlike Pak1, cannot complement an STE20 mutation in Saccharomyces cerevisiae. Second, Pak5 binds to the GTPases Cdc42 and Rac, but these GTPases do not regulate Pak5 kinase activity, which is constitutive and stronger than any other Pak. Third, Pak5 prevents apoptosis induced by camptothecin and C2-ceramide by phosphorylating BAD on Ser-112 in a protein kinase A-independent manner and prevents the localization of BAD to mitochondria, thereby inhibiting the apoptotic cascade that leads to apoptosis. Finally, we show that Pak5 itself is constitutively localized to mitochondria, and that this localization is independent of kinase activity or Cdc42 binding. These features make Pak5 unique among the Pak family and suggest that it plays an important role in apoptosis through BAD phosphorylation.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1507-1520 ◽  
Author(s):  
A Meléndez ◽  
W Li ◽  
D Kalderon

Abstract The DC2 gene was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development.


2021 ◽  
Author(s):  
Rebecca LaCroix ◽  
Benjamin Lin ◽  
Andre Levchenko

SummaryKinase activity in signaling networks frequently depends on regulatory subunits that can both inhibit activity by interacting with the catalytic subunits and target the kinase to distinct molecular partners and subcellular compartments. Here, using a new synthetic molecular interaction system, we show that translocation of a regulatory subunit of the protein kinase A (PKA-R) to the plasma membrane has a paradoxical effect on the membrane kinase activity. It can both enhance it at lower translocation levels, even in the absence of signaling inputs, and inhibit it at higher translocation levels, suggesting its role as a linker that can both couple and decouple signaling processes in a concentration-dependent manner. We further demonstrate that superposition of gradients of PKA-R abundance across single cells can control the directionality of cell migration, reversing it at high enough input levels. Thus complex in vivo patterns of PKA-R localization can drive complex phenotypes, including cell migration.


2001 ◽  
Vol 88 (3) ◽  
pp. 319-324 ◽  
Author(s):  
Ciro Indolfi ◽  
Eugenio Stabile ◽  
Carmela Coppola ◽  
Adriana Gallo ◽  
Cinzia Perrino ◽  
...  

1995 ◽  
Vol 306 (3) ◽  
pp. 765-769 ◽  
Author(s):  
R Levistre ◽  
M Berguerand ◽  
G Bereziat ◽  
J Masliah

Pretreatment of alveolar macrophages with cholera toxin inhibits the release of arachidonic acid induced by the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine. The results presented here show that cholera toxin might exert its inhibitory effect through the phosphorylation of Gi alpha by protein kinase A (PKA). (1) Gi-proteins from cells pretreated with cholera toxin showed parallel increases in their sensitivity to ADP-ribosylation by toxins in vitro and in Gi alpha phosphorylation. By contrast, the Gi alpha concentration was unchanged. (2) Cholera toxin pretreatment also decreased the functional activity of Gi, as assessed by the inhibition (80%) of agonist-induced binding of guanosine-5′-[gamma-thio]triphosphate (GTP[gamma S]). (3) These effects of cholera toxin were blocked by a specific PKA inhibitor, N-(2-[methyl-amino]ethyl)-3-isoquinolinesulphonamide dihydrochloride (H8) and mimicked by a cyclic AMP (cAMP) analogue and a phosphatase inhibitor. (4) Gi alpha was also phosphorylated in vitro by the catalytic subunit of PKA. In contrast with other cell systems, the stimulation of protein kinase C seems to have no effect on the sensitivity of Gi to ADP-ribosylation or on its phosphorylation. Therefore, the phosphorylation of Gi-proteins by PKA seems to be the actual target of the negative control of arachidonic acid release via the cAMP-mediated pathway.


2006 ◽  
Vol 40 (5) ◽  
pp. 234-243 ◽  
Author(s):  
David J. Wiley ◽  
Roland Nordfeldth ◽  
Jason Rosenzweig ◽  
Christopher J. DaFonseca ◽  
Richard Gustin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document